Unregulated Contaminant Monitoring Rule 5 (UCMR 5)

Every five years the EPA issues a regulation called the Unregulated Contaminant Monitoring Rule (UCMR), which lists 20 to 30 unregulated contaminants that must be monitored for by large public water systems. Used as a tool to find unregulated contaminants of concern in drinking water, the EPA can then determine whether to set drinking water standards or to require water providers to use certain treatment systems to reduce or eliminate these contaminants.

The UCMR 5 monitoring, which started in January 2023 and will continue through 2025, contains sampling and testing requirements for 30 chemicals:

- EPA Method 200.7 Rev. 2, Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry: Lithium
- EPA Method 533 Rev. 3.2, Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry: 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic Acid,1H,1H,2H,2H-Perfluorodecane Sulfonic Acid, 1H,1H,2H,2H-Perfluorodecane Sulfonic Acid, 1H,1H,2H,2H-Perfluorononanoic Acid, 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic Acid, Hexafluoropropylene Oxide Dimer Acid, Nonafluoro-3-6-dioxaheptanoic Acid, Perfluoro(2-ethoxyethane)sulfonic Acid, Perfluoro-3-methoxypropanoic Acid, Perfluoro-4-methoxybutanoic Acid, Perfluorobutanesulfonic Acid, Perfluorobutanoic Acid, Perfluorobexanesulfonic Acid, Perfluorobexanesulfonic Acid, Perfluorobexaneic Acid, Perfluorobexanesulfonic Acid, Perfluorobexa
- EPA Method Method 537.1 Rev. 3, Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS): N-ethyl Perfluorooctanesulfonamidoacetic Acid, N-methyl Perfluorooctanesulfonamidoacetic Acid, Perfluorotetradecanoic Acid, Perfluorotridecanoic Acid

The UCMR 5 test results for each chemical detected, or found above the reporting level, are listed in the charts found on pages 6 through 8 for each distribution area tested in 2024.

	EPA Method 533 UCMR 5					Distrib	ution A	Area 1			istrib	ution A	rea 5	
Detected Compound	Likely Source	MCL	MCLG OF HAL*	Unit of Measure	Violation Yes/No			adings Avg. Value		Violation Yes/No		<u>e of Rea</u> High Value	Avg.	No. of Tests
Perfluorohexanoic Acid	Released into the environment from use in commercial and industrial applications	50 50 50 0.01 0.01 50	2.0 n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No No No No No	ND ND ND	ND ND ND	ND ND ND ND ND ND	46 46 46 46 46 46 46 46	No No No No No No	ND ND ND ND ND ND ND	ND 0.006 ND ND ND ND ND	ND ND ND ND ND ND ND	4 4 4 4 4 4 4 4

* Refer to page 5 for Water Quality Data Terms, Definitions and Units of Measure including; MCL, MCLG, HAL.

Unregulated Contaminant Monitoring Rule 5 (UCMR 5)

Synthetic Organic Compo	unds including Per- and Polyfluor	oalkyl S	Substa	inces - Ar	alysis I	Perfor	med b	y EPA	Meth	od 533 l	UCMR	5							
	EPA Method 533 UCMR 5					Distrik	oution /	Area 6			istribu	ution A	Area 8		Ľ)istribi	ution A	rea 9	
Detected Compound	Likely Source	MCL	MCLG Or HAL*	Unit of Measure	Violation Yes/No		<u>ge of Rea</u> High Value			Violation Yes/No		<u>e of Re</u> High Value		No. of	Violation Yes/No		<u>ie of Re</u> High Value	<u>adings</u> Avg. Value	No. o
Perfluorobutanesulfonic Acid Perfluorobutanoic Acid Perfluorohexanesulfonic Acid Perfluoroctanesulfonic Acid Perfluoroctanesulfonic Acid Perfluorocentanoic Acid	Released into the environment from use in commercial and industrial applications	50 50 50 0.01 0.01 50	2.0 n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No No No No No	ND ND ND ND ND ND ND	ND 0.005 ND ND ND ND ND	ND ND ND ND ND ND ND	16 16 16 16 16 16 16	No No No No No No	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	2 2 2 2 2 2 2 2 2 2	No No No No No No	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND	10 10 10 10 10 10 10

Synthetic Organic Compo	unds including Per- and Polyfluoro	oalkyl S	Substa	inces - Ar	alysis	Perfor	med by	y EPA	Meth	od 533	UCMF	R 5							
	EPA Method 533 UCMR 5					Distrib	ution A	rea 10)	D	istribu	ition A	rea 11		D	istribu	tion Ar	ea 12	
Detected Compound	Likely Source	MCL	MCLG or HAL*	Unit of Measure	Violatior Yes/No			Avg.		Violation Yes/No			Avg.	No. of	Violation Yes/No			Avg.	No. of
Perfluorobutanesulfonic Acid Perfluorobutanoic Acid Perfluorohexanesulfonic Acid Perfluorohexanoic Acid Perfluorooctanesulfonic Acid Perfluorooctanoic Acid Perfluorooctanoic Acid	Released into the environment from use in commercial and industrial applications	50 50 50 0.01 0.01 50	2.0 n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No No No No No	ND ND ND ND ND ND ND	ND ND 0.009 ND	ND ND ND ND ND ND 0.004	8 8 8 8 8 8 8 8 8	No No No No	ND ND	ND ND 0.006 ND 0.005 0.008	ND ND	20 20 20 20 20 20 20 20 20	No No No No No No	ND ND (ND (ND ND (0.003 0.006 ND 0.006	ND ND ND ND	50 50 50 50 50 50 50 50

Synthetic Organic Compou	inds including Per- and Polyfluoro	alkyl	Substa	nces - An	alysis	Perfor	ned b	y EPA	Meth	od 533 I	UCMF	5							
	EPA Method 533 UCMR 5				l I	Distribu	ition A	rea 14		Di	istribu	ition A	rea 1	5	D	istribu	tion A	rea 23	
Detected Compound	Likely Source	MCL	MCLG Or HAL*	Unit of Measure	Violation Yes/No		<u>e of Rea</u> High Value	adings Avg. Value		Violation Yes/No		l <u>e of Rea</u> High Value	Avg.	No. of	Violation Yes/No		<u>ie of Re</u> High Value		No. of
Perfluorobutanesulfonic Acid Perfluorobutanoic Acid Perfluorohexanesulfonic Acid Perfluorochaxanoic Acid Perfluoroctanesulfonic Acid Perfluorocanoic Acid Perfluorocentanoic Acid	Released into the environment from use in commercial and industrial applications	50 50 50 0.01 0.01 50	2.0 n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No No No No No	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	4 4 4 4 4 4 4 4		ND ND ND	ND 0.003 0.007 0.005 0.006	ND ND ND ND ND ND ND	30 30 30 30 30 30 30 30	No No No No No No	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND	8 8 8 8 8 8 8 8

Synthetic Organic Compo	unds including Per- and Polyfluoro	balkyl S	Substa	nces - An	alysis l	Perfor	med b	y EPA	Meth	od 533	UCMR	5							
	EPA Method 533 UCMR 5				L	Distribu	ition A	rea 30		Di	istribu	tion A	rea 54	4	D	istribu	tion A	rea 67	
Detected Compound	Likely Source	MCL	MCLG or HAL*	Unit of Measure	Violation Yes/No					Violation Yes/No		e of Rea High Value	Avg.	No. of	Violation Yes/No		e of Re High Value		No. of
Perfluorobutanesulfonic Acid Perfluorobutanoic Acid Perfluorobexanesulfonic Acid Perfluorobexanesulfonic Acid Perfluorooctanesulfonic Acid Perfluoropentanoic Acid	Released into the environment from use in commercial and industrial applications	50 50 50 0.01 0.01 50	2.0 n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No No No No No	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND	12 12 12 12 12 12 12 12 12	No No No No	ND ND ND ND ND ND ND	ND ND ND	ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1	No No No No No No	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1

* Refer to page 5 for Water Quality Data Terms, Definitions and Units of Measure including; MCL, MCLG, HAL.

Unregulated Perfluoroalkyl and Polyfluoroalkyl Substances Monitoring

	EPA Method 533					Distrib	ution A	rea 1			Distrib	ution A	rea 4			Distrib	ution A	rea 5
tected Compound	Likely Source	MCL	MCLG Or HAL*	Unit of Measure	Violation	Low	<u>le of Rea</u> High	Avg.		Violation	Low	<u>le of Rea</u> High	Avg.	No. of	Violatio	n Low	<u>ge of Rea</u> High	Avg.
IH2H2HPerfluorooctane Sulfonic Ac rfluorobutanesulfonic Acid rfluorobutanoic Acid rfluoroheptanesulfonic Acid rfluoroheptanoic Acid rfluorohexanoic Acid rfluoronexanoic Acid rfluorononanoic Acid rfluoropentanesulfonic Acid rfluoropentanoic Acid	Released into the environment from use in commercial and industrial applications	50 50 50 50 50 50 50 50 50 50	n/a 2.0 n/a n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Yes/No No No No No No No No No No No	ND ND ND ND ND ND ND	ND 0.004 0.014	ND ND ND ND ND ND ND ND ND ND	Tests 486 486 486 486 486 486 486 486 486 486 486 486	Yes/No No No No No No No No No	Value ND ND ND ND ND ND ND ND ND ND	Value ND ND ND ND ND ND ND ND ND ND	Value ND ND ND ND ND ND ND ND ND ND ND ND	Tests 12	Yes/No No No No No No No No	Value ND ND ND ND ND ND ND ND ND ND	ND ND 0.006 ND ND ND ND	Value ND ND ND ND ND ND ND ND ND ND ND
nthetic Organic Compo	ounds including Per- and Polyfluoro	oalkyl S	Substa	nces - A	nalysis	Perfor	rmed b	oy EPA	A Meth	od 533								
	EPA Method 533					Distrib	ution A	krea 6			Distrib	ution A	rea 7			Distrik	oution A	rea 8
etected Compound	Likely Source	MCL	MCLG or HAL*	Unit of Measure	Violation Yes/No		<u>ie of Rea</u> High Value	Avg.	No. of Tests	Violatior Yes/No		<u>ie of Rea</u> High Value		No. of Tests	Violatio Yes/No	<u>Ran</u> n Low Value	ge of Rea High Value	adings Avg. Value
H.2H.2H-Perfluorooctane Sulfonic Ac fluorobutanesulfonic Acid fluorobutanoic Acid fluoroheptanesulfonic Acid fluoroheptanoic Acid	Released into the environment	50 50 50 50 50	n/a 2.0 n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L	No No No No No	ND ND ND ND ND	0.005 ND	ND ND ND ND ND	72 72 72 72 72 72 72	No No No No	ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	6 6 6 6	No No No No	ND ND ND ND ND	ND ND ND	ND ND ND ND ND
fluorohexanesulfonic Acid fluorohexanoic Acid fluorononanoic Acid fluoropentanesulfonic Acid fluoropentanoic Acid	industrial applications	50 50 50 50 50	n/a n/a n/a n/a n/a	uğ/L ug/L ug/L ug/L ua/L	No No No No	ND ND ND ND Perfor	ND ND ND 0.004		72 72 72 72 72 72	_		ND ND ND 0.003	ND ND ND ND ND	6 6 6 6	No No No No	ND ND ND ND	ND ND ND ND ND	ND ND ND ND
fluorohexanesulfonic Acid fluorohexanoic Acid fluoropananoic Acid fluoropentanesulfonic Acid fluoropentanoic Acid fluoropentanoic Acid	industrial applications	50 50 50 50 50	n/a n/a n/a n/a n/a	uğ/L ug/L ug/L ug/L ua/L	No No No No	ND ND ND ND ND Perfor Distrib	ND ND ND 0.004	ND ND ND ND ND ND ND ND ND ND ND ND ND N	72 72 72 72 72	No No No od 533	ND ND ND ND Distribu Rang	ND ND 0.003	ND ND ND ND	6 6 6	No No No No Violatio	ND ND ND ND Distrib Ran n Low	ND ND ND ND ND Ution Al	ND ND ND ND ND rea 11 adings Avg.
fluorohexanesulfonic Acid fluorohexanoic Acid fluoropentanesulfonic Acid fluoropentanesulfonic Acid fluoropentanoic Acid nthetic Organic Compo tected Compound H2H2H2HPerfluorooctane Sulfonic Acid fluorobutanesulfonic Acid fluorobutanesulfonic Acid fluoroheptanesulfonic Acid fluoroheptanesulfonic Acid fluoroheptanesulfonic Acid fluoroheptanesulfonic Acid fluoroheptanesulfonic Acid fluoroheptanesulfonic Acid fluorohexanoic Acid fluorohexanoic Acid fluoronenanoic Acid fluorohexanoic Acid	industrial applications	50 50 50 50 50	n/a n/a n/a n/a n/a Substa McLG	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No No No	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	72 72 72 72 72	No No No od 533	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND 0.003	ND ND ND ND ND rea 10 adings Avg. Value ND ND ND ND ND ND ND ND ND	6 6 6	No No No	ND ND ND Distrib	ND ND ND ND ND ND ND ND ND ND ND ND 0.002 ND 0.002 ND 0.002 ND ND 0.003 0.005 ND	ND ND ND ND ND ND ND Avg. Value ND ND ND ND ND ND ND
rfluorohexanesulfonic Acid rfluorohexanoic Acid rfluoropentanesulfonic Acid rfluoropentanesulfonic Acid rfluoropentanoic Acid rnthetic Organic Compo tected Compound tH2H2H2H2Perfluorooctane Sulfonic Acid rfluorobutanesulfonic Acid rfluoroheptanesulfonic Acid rfluoroheptanoic Acid rfluoroheptanoic Acid rfluoroheptanoic Acid rfluoroheptanoic Acid rfluoroheptanoic Acid rfluoroheptanoic Acid rfluoroheptanoic Acid rfluoroheptanoic Acid rfluoroheptanoic Acid rfluoroheptanesulfonic Acid rfluoroheptanoic Acid rfluoroheptanoic Acid rfluoroheptanoic Acid rfluoroheptanoic Acid rfluorohentanoic Acid	industrial applications industrial applications EPA Method 533 Likely Source Released into the environment from use in commercial and industrial applications ounds including Per- and Polyfluore	50 50 50 50 50 50 50 50 50 50 50 50 50 5	n/a n/a n/a n/a n/a n/a McLG HAL* n/a n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No No No No No Yiolation Yes/No No No No No No No No No	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	72 72 72 72 72 72 72 72 72 72 72 72 72 7	No No No No No Solution Yes/No No No No No No No No No No No	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND 0.003 4tion A ye of Rea High Value ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND rea 10 adings Avg. Value ND ND ND ND ND ND ND ND ND	6 6 6 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Violatio Yes/No No No No No No No No No No No No	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND 0.002 ND 0.002 ND 0.002 ND 0.003 0.002 0.005	ND ND ND ND ND ND ND Adings Avg. ND ND ND ND ND ND ND ND ND ND ND ND
fluorohexanoic Acid fluorohexanoic Acid fluoropentanoic Acid fluoropentanoic Acid fluoropentanoic Acid nthetic Organic Compo tected Compound H2H2H2H2erfluorooctane Sulfonic Acid fluorobutanesulfonic Acid fluorobutanesulfonic Acid fluoroheptanoic Acid fluoroheptanoic Acid fluoroheptanoic Acid fluoropentanesulfonic Acid	industrial applications industrial applications punds including Per- and Polyfluoro EPA Method 533 Likely Source id. Released into the environment from use in commercial and industrial applications punds including Per- and Polyfluoro EPA Method 533	50 50 50 50 50 50 50 50 50 50	n/a n/a n/a n/a n/a n/a m/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No No No No No Yiolation Yes/No No No No No No No No No	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND 0.004 mmed b ution A ution A ution A High Value ND ND ND ND ND ND ND ND 0.003 ND 0.005	ND ND ND ND ND ND ND ND ND ND ND ND ND N	72 72 72 72 72 72 72 72 72 72 72 72 72 7	No No No No No Solution Yes/No No No No No No No No No No No	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND 0.003 4tion A ye of Rea High Value ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND rea 10 adings Avg. Value ND ND ND ND ND ND ND ND ND	6 6 6 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Violatio Yes/No No No No No No No No No No No No	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND 0.002 ND 0.002 ND 0.002 ND ND 0.003 0.005 ND	ND ND ND ND ND ND ND Adings Avg. ND ND ND ND ND ND ND ND ND ND ND ND
fluorohexanesulfonic Acid fluorohexanoic Acid fluoropentanesulfonic Acid fluoropentanoic Acid fluoropentanoic Acid nthetic Organic Compo tected Compound H2H2H2HPerfluorooctane Sulfonic Acid fluorobutanesulfonic Acid fluorobutanesulfonic Acid fluoroheptanoic Acid fluoroheptanoic Acid fluoroheptanoic Acid fluoroheptanoic Acid fluoroheptanoic Acid fluoropentanoic Acid fluoropentanesulfonic Acid fluoropentanesulfonic Acid fluoropentanoic Acid fluoropentanoic Acid	industrial applications industrial applications EPA Method 533 Likely Source Released into the environment from use in commercial and industrial applications ounds including Per- and Polyfluore	50 50 50 50 50 50 50 50 50 50 50 50 50 5	n/a n/a n/a n/a n/a n/a McLG HAL* n/a n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No No No No No Yiolation Yes/No No No No No No No No No	ND ND ND ND ND ND ND Distrib Rang ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	72 72 72 72 72 72 72 72 72 72 72 72 72 7	No No No No No Solution Yes/No No No No No No No No No No No	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND 0.003 atton A ge of Recent High Value ND ND	ND ND ND ND ND ND Avg. Value ND ND ND ND ND ND ND ND ND ND ND ND ND	6 6 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	No No No No No Yiolatio Yes/No No No No No No No	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND Ution Al ge of Res ND 0.002 ND 0.002 ND 0.002 ND 0.003 0.005 ND 0.006 ution At ge of Res High	ND ND ND ND ND ND ND Adings Avg. Value ND ND ND ND ND ND ND ND ND ND ND ND ND

* Refer to page 5 for Water Quality Data Terms, Definitions and Units of Measure including; MCL, MCLG, HAL.

Unregulated Perfluoroalkyl and Polyfluoroalkyl Substances Monitoring (cont'd)

	EPA Method 533				D	istribu	ition A	rea 23	})istribı	ition Ai	rea 26)istribu	ition Ar	ea 30
Detected Compound	Likely Source	MCL	MCLG OF HAL*	Unit of Measure	Violation Yes/No		<u>le of Re</u> High Value	Avg.		Violatior Yes/No		<u>le of Rea</u> High Value	Avg.	No. of Tests	Violation Yes/No			<u>dings</u> Avg. No Value Te
H.1H.2H.2H-Perfluorooctane Sulfonic Acid Perfluorobutanesulfonic Acid Perfluoroheptanesulfonic Acid Perfluoroheptanesulfonic Acid Perfluoroheptanoic Acid Perfluorohexanesulfonic Acid Perfluorohexanoic Acid Perfluoronentanesulfonic Acid Perfluoropentanesulfonic Acid Perfluoropentanesulfonic Acid	Released into the environment from use in commercial and industrial applications	50 50 50 50 50 50 50 50 50 50	n/a 2.0 n/a n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No No No No No No No	ND ND ND ND ND ND ND ND ND	0.019 0.003 0.012 ND 0.014 0.009 0.028 0.003 ND 0.051	ND ND ND ND ND 0.002 ND 0.003	174 174 174 174 174 174 174 174 174 174	No No No No No No No No	ND ND ND ND ND ND ND ND ND ND	ND ND 0.007 ND 0.002 0.008 0.045 ND ND	ND ND ND ND ND 0.005 ND 0.005	$ \begin{array}{r} $	No No No No No No No No No	ND ND ND ND ND ND ND ND ND ND	ND 0.006 0.092 ND ND 0.078 ND ND	ND ND ND ND ND ND ND ND ND 0.006
Synthetic Organic Compo	unds including Per- and Polyfluor	oalkyl (Substa	nces - Ai	alysis	Perfo	rmed I	oy EP/	A Meth	od 533								
	EPA Method 533				D	istribu	ution A	rea 32	2		Distribu	ution A	rea 34			Distribu	ition Ar	ea 35
Detected Compound	Likely Source	MCL	MCLG Or HAL*	Unit of Measure	Violation Yes/No		<u>le of Re</u> High Value	Avg.	No. of Tests	Violatior Yes/No		<u>ie of Rea</u> High Value		No. of	Violatior Yes/No			<u>dings</u> Avg. No Value Te
H 1H 2H 2H-Perfluorooctane Suifonic Aci Perfluorobutanoic Acid Perfluorobutanoic Acid Perfluoroheptanesulfonic Acid Perfluoroheptanoic Acid Perfluorohexanosulfonic Acid Perfluorohexanosic Acid Perfluoronexanoic Acid Perfluoropentanesulfonic Acid Perfluoropentanoic Acid	 Released into the environment from use in commercial and industrial applications 	50 50 50 50 50 50 50 50 50 50	n/a 2.0 n/a n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No No No No No No No	ND ND ND ND ND ND ND ND ND ND	ND ND ND 0.003 ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	9 9 9 9 9 9 9 9 9 9 9 9	No No No No No No No No	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	7 7 7 7 7 7 7 7 7 7 7 7 7	No No No No No No No No	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND 1 ND 1
Synthetic Organic Compo	unds including Per- and Polyfluor	oalkyl (Substa	nces - Ai						_					_			
	EPA Method 533 Likely Source	MCL	MCLG OT HAL*	Unit of Measure	Violation	Rang	ution A <u>le of Re</u> High	<u>adings</u> Avg.	No. of	Violatior	<u>Rang</u> Low	ition Ai	adings Avg.		Violatior Yes/No	Rang	tion Ar	
Detected Compound									Tests	Yes/No	Value	Value	Value	Tests	res/NO			
Detected Compound H.11.2H.2H.Perfluorooctane Sulfonic Acid Perfluorobutanoic Acid Perfluorobutanoic Acid Perfluoroheptanesulfonic Acid Perfluoroheptanoic Acid Perfluorohexanosic Acid Perfluoronenanoic Acid Perfluoropentanesulfonic Acid Perfluoropentanesulfonic Acid	Released into the environment from use in commercial and industrial applications	50 50 50 50 50 50 50 50 50 50 50	n/a 2.0 n/a n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Yes/No No No No No No No No No	Value ND ND ND ND ND ND ND ND ND ND	Value ND ND ND ND ND ND ND ND ND ND ND ND	Value ND ND ND ND ND ND ND ND ND ND	8 8 8 8 8 8 8 8 8 8 8 8 8	No No No No No No No No	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	22 22 22 22 22 22 22 22 22 22 22 22 22	No No No No No No No No No No	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND
H.1H.2H.2H.Perfluorooctane Sulfonic Aci Perfluorobutanesulfonic Acid Perfluoroheptanesulfonic Acid Perfluoroheptanoic Acid Perfluorohexanesulfonic Acid Perfluorohexanoic Acid Perfluoronenanoic Acid Perfluoropentanesulfonic Acid Perfluoropentanoic Acid	_ _ Released into the environment _ from use in commercial and	50 50 50 50 50 50 50 50 50 50	2.0 n/a n/a n/a n/a n/a n/a n/a		Yes/No No No No No No No No No	Value ND ND ND ND ND ND ND ND ND	Value ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	8 8 8 8 8 8 8 8 8 8 8 8 8	No No No No No No No	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	22 22 22 22 22 22 22 22 22 22 22 22	No No No No No No No	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND
IH.1H.2H.2H-Perfluorooctane Sulfonic Aci Perfluorobutanesulfonic Acid Perfluoroheptanesulfonic Acid Perfluoroheptanoic Acid Perfluorohexanesulfonic Acid Perfluorohexanesulfonic Acid Perfluoronanoic Acid Perfluoropentanesulfonic Acid Perfluoropentanoic Acid	Released into the environment from use in commercial and industrial applications	50 50 50 50 50 50 50 50 50 50	2.0 n/a n/a n/a n/a n/a n/a n/a		Yes/No No No No No No No No No No	Value ND ND ND ND ND ND ND ND ND ND ND	Value ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	No No No No No No No No	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	22 22 22 22 22 22 22 22 22 22 22	No No No No No No No	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND

IR, IR, 2R, 2R-Petriuoroociarie Suitonic Acio			1//4	ug/L										NO	ND	ND	ND	3
Perfluorobutanesulfonic Acid		50	2.0	ug/L	No	ND	ND ND	6	No	ND	ND	ND	10		ND	ND	ND	3
Perfluorobutanoic Acid		50	n/a	uq/L	No	ND	ND ND	6	No	ND	ND	ND	10	No	ND	ND	ND	3
Perfluoroheptanesulfonic Acid	Released into the environment	50	n/a	uğ/L	No	ND	ND ND	6	No	ND	ND	ND	_10_	No	ND	ND	ND	3
Perfluoroheptanoic Acid	from use in commercial and	50	n/a	ug/L	No	ND	ND ND	6	No	ND	ND	ND	10	No	ND	ND	ND	3
Perfluorohexanesulfonic Acid		50	n/a	uğ/L	No	ND	ND ND	6	No	ND	ND	ND	10	No	ND	ND	ND	3
Perfluorohexanoic Acid	industrial applications	50	n/a	ua/L	No	ND	0.002 ND	6	No	ND	ND	ND	10		ND	ND	ND	3
Perfluorononanoic Acid		50	n/a	ug/L	No	ND	ND ND	6	No	ND	ND	ND	10		ND		ND	3
Perfluoropentanesulfonic Acid		50	n/a	uă/L	No	ND	ND ND	6	No	ND	ND	ND	10	No	ND		ND	3
Perfluoropentanoic Acid		50	n/a	ua/L	No	ND	0.002 ND	6	No	ND	ND	ND	10		ND		ND	3
				Ű									_	110				

* Refer to page 5 for Water Quality Data Terms, Definitions and Units of Measure including; MCL, MCLG, HAL.

Unregulated Perfluoroalkyl and Polyfluoroalkyl Substances Monitoring (cont'd)

	EPA Method 533				Dis	tributi	on Are	a EFW	D	Dist	tributio	on Area	a RSV	/D	Dist	ributic	on Area	a SBV	D
Detected Compound	Likely Source	MCL	MCLG HAL*	Unit of Measure	Violation	Low	<u>e of Rea</u> High	Avg. I		Violation	Low	<u>e of Rea</u> High	Avg.	No. of	Violation	Low	<u>e of Rea</u> High Value	Avg.	No. d
1H. H.2H.2H-Perfluorooctane Sulfonic Ac Perfluorobutanosic Acid Perfluorobutanoic Acid Perfluoroheptanesulfonic Acid Perfluoroheptanosic Acid Perfluorohexanoic Acid Perfluorohexanoic Acid Perfluorononanoic Acid Perfluoropentanoic Acid Perfluoropentanoic Acid	Released into the environment from use in commercial and industrial applications	50 50 50 50 50 50 50 50 50 50 50	n/a 2.0 n/a n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Yes/No No No No No No No No No	Value ND ND ND ND ND ND ND ND ND ND	Value ND ND ND ND ND ND ND ND ND ND	Value Value ND ND ND ND ND ND ND ND ND ND ND	4 4 4 4 4 4 4 4 4 4 4 4	Yes/No No No No No No No No No	Value ND ND ND ND ND ND ND ND ND ND	Value ND ND ND ND ND ND ND ND ND ND ND	Value ND ND ND ND ND ND ND ND ND ND ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Yes/No No No No No No No No No	ND ND	ND ND ND ND ND 0.002 ND ND	Value ND ND ND ND ND ND ND ND ND ND ND	

Synthetic Organic Compounds including Per- and Polyfluoroalkyl Substances - Analysis Performed by EPA Method 533

	EPA Method 533						Distribution Area V	WNWD	
Detected Compound	Likely Source	MCL	MCLG or HAL*	Unit of Measure	Violation Yes/No	Low Value	<u>Range of Readings</u> High Value	Avg. Value	No. of Tests
1H.1H.2H.2H-Perfluorooctane Sulfonic Acid Perfluorobutanesulfonic Acid Perfluoroheptanesulfonic Acid Perfluoroheptanesulfonic Acid Perfluoroheptanoic Acid Perfluorohexanoic Acid Perfluorohexanoic Acid Perfluoropentanesulfonic Acid Perfluoropentanesulfonic Acid		50 50 50 50 50 50 50 50 50 50	n/a 2.0 n/a n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No	ND ND ND ND ND ND ND ND ND ND	ND 0.007 ND ND ND 0.004 ND ND ND ND 0.005	ND ND ND ND ND ND ND ND ND ND ND	16 16 16 16 16 16 16 16 16 16 16

* Refer to page 5 for Water Quality Data Terms, Definitions and Units of Measure including; MCL, MCLG, HAL.

Regulated Perfluoroalkyl and Polyfluoroalkyl Substances Monitoring

	EPA METHOD 533					Distribu	ution A	rea 1			Distrib	ution	Area	4		Distrib	ution A	rea 5
etected Compound	Likely Source	MCL	MCLG or HAL**	Unit of Measure	Violation Yes/No			adings Avg. Value		Violatior Yes/No		<u>ge of Ro</u> High Value	n Avg	<u>is</u> j. No.ot ie Tests				adings Avg. N Value
erfluorooctanesulfonic Acid erfluorooctanooic Acid	Released into the environment from widespread use in commercial and	*0.010 *0.010		ug/L ug/L	No No			ND	486 486	No No	ND ND	ND ND	ND	12	No	ND ND	ND ND	ND ND
ynthetic Organic Compo	unds including Per- and Polyfluor	oalkyl	Subst	ances - /	_				PA Me	_					_			-
	EPA METHOD 533					Distribu					Distrib						ution A	
etected Compound	Likely Source	MCL	MCLG or HAL**	Unit of Measure	Violation Yes/No			Avg. Value		Violation Yes/No		<u>ge of Ro</u> High Value	n Avg	. No. o	f Violation Yes/No		e of Rea High Value	Avg. N Value
rfluorooctanesulfonic Acid rfluorooctanooic Acid	Released into the environment from widespread use in commercial and	*0.010 *0.010		ug/L ug/L	No No	ND ND	ND 0.002	ND ND	72 72	<u>No</u>	ND ND	ND ND		6 6		ND ND	ND ND	ND ND
inthetic Organic Compo	ounds including Per- and Polyfluor	roalkyl	Subst	ances - /	Analysis	Perfo	ormed	by EF	PA Me	thod 53	3							
	EPA METHOD 533					listribu) Distribu	ition A	Area 1	0		Distribu	tion A	rea 11
ected Compound	Likely Source	MCL	MCLG or HAL**	Unit of Measure	Violation	Low	e of Rea High	Avg.			Low		Avg	No. of			<u>e of Rea</u> High	adings Avg. N
			I AL		Yes/No	Value		Value	Tests	Yes/No	Value	Value	 Value 	e Tests	Yes/No	Value	Value	Value 7
	Released into the environment from widespread use in commercial and	*0.010 *0.010	0	ug/L ug/L	No	ND	ND	ND ND	<u>31</u> <u>31</u>	<u>No</u> No	ND ND	0.002		<u>55</u> 55	No	ND	0.004	ND
luorooctanooic Acid		*0.010	0	uğ/L	No No	ND ND	ND ND	ND	_31_	<u>_No</u>	ND				No	ND	0.004	ND
fluorooctanooic Acid	widespread use in commercial and	*0.010	0	uğ/L	<u>No</u> No	ND ND	ND ND	ND by EF	_31_	<u>No</u>	ND	0.002	ND	55	<u>No</u>	ND ND	0.004 0.005	ND ND
fluorooctanooic Acid	widespread use in commercial and	*0.010	0	uğ/L	<u>No</u> No Analysis Di Violation	ND ND S Perfc Stribut Range Low	ND ND prmed tion Ar e of Read High	ND by EF ea 12 dings Avg. 1	<u>31</u> PA Me	<u>No</u>	ND 33 Distribu <u>Rang</u>	0.002	ND Area 1 eadings Avg.	4 No. of		ND ND Distribu Rang	0.004	ND ND rea 15 dings Avg. N
Iuorooctanooic Acid	widespread use in commercial and punds including Per- and Polyfluor EPA METHOD 533	*0.010	0 Subs MCLG HAL	uğ/L tances - / Unit of	No No Analysis Di Violation Yes/No No	ND ND SPerfo Istribut Range Low Value ND (0	ND ND brmed tion Ar e of Rear High Value	ND by Ef ea 12 dings Avg. Value ND	<u>31</u> PA Me	<u>No</u> thod 53 Violation	ND 33 Distribu Rang Low	<u>0.002</u> tion A e of Re High	ND Area 1 eadings Avg.	4 No. of	Violation Yes/No	ND ND Distribu Rang Low Value ND	0.004 0.005	ND ND rea 15 dings Avg. N Value
Iuorooctanooic Acid	widespread use in commercial and bunds including Per- and Polyfluor EPA METHOD 533 Likely Source Released into the environment from	*0.010 roalkyl MCL *0.010	0 Subs MCLG HAL	ug/L ug/L Unit of Measure ug/L	No No Analysis Di Violation Yes/No No	ND ND S Perfo Istribut Range Low Value ND (0	ND ND brmed tion Ar e of Read High Value 0.008	ND by Ef ea 12 dings Avg. Value ND	31 PA Me No. of Tests 421	NoNO_NO	ND 33 Distribu Rang Low Value ND	0.002 tion A e of Re High Value ND	ND Area 1 eadings Avg. Value ND	4 No. of Tests 20	Violation Yes/No	ND ND Distribu Rang Low Value ND	0.004 0.005 attion A e of Rea High Value 0.008	ND ND rea 15 dings Avg. N Value
Iuorooctanooic Acid Inthetic Organic Compo Atected Compound fluorooctanesulfonic Acid fluorooctanooic Acid	widespread use in commercial and bunds including Per- and Polyfluor EPA METHOD 533 Likely Source Released into the environment from	*0.010 roalkyl McL *0.010 *0.010	0 Subsi HÂĹ* 0 0	ug/L tances - , Unit of Measure ug/L ug/L	No No Analysis Violation Yes/No No No	ND ND Stribut Range Low Value ND C ND C	ND ND ormed tion Ar e of Read High Value 0.008	ND by EF ea 12 dings Avg. Value ND ND	31 PA Me No. of Tests 421 421	No thod 53 Violation Yes/No No	ND 33 Iistribu Rang Low Value ND ND	0.002 tion A e of Re High Value ND	ND Area 1 eadings Avg. Value ND	4 No. of Tests 20	Violation Yes/No	ND ND Distribu Rang Low Value ND	0.004 0.005 attion A e of Rea High Value 0.008	ND ND rea 15 dings Avg. N Value
Iuorooctanooic Acid (nthetic Organic Compo etected Compound fluorooctanesulfonic Acid fluorooctanooic Acid	widespread use in commercial and bunds including Per- and Polyfluol EPA METHOD 533 Likely Source Released into the environment from widespread use in commercial and	*0.010 roalkyl McL *0.010 *0.010	0 Subsi HÂĹ* 0 0	ug/L tances - , Unit of Measure ug/L ug/L	No No Analysis Violation Yes/No No No Analysis	ND ND Stribut Range Low Value ND C ND C	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND by EF ea 12 dings Avg. 1 Value ND ND	31 PA Me No. of Tests 421 421 PA Me	No thod 53 Violation Yes/No No	ND 33 Iistribu Rang Low Value ND ND	tion A e of Ree High Value ND ND	ND Area 1 eadings Avg. Value ND ND	4 No. of Tests 20 20	Violation Yes/No No	ND ND Distribu Rang Low Value ND ND	0.004 0.005 4tion A e of Rea High Value 0.008 0.008 (0	ND ND rea 15 dings Avg. N Value
fluorooctanooic Acid ynthetic Organic Compo etected Compound fluorooctanesulfonic Acid fluorooctanooic Acid ynthetic Organic Compo	widespread use in commercial and bunds including Per- and Polyfluor EPA METHOD 533 Likely Source Released into the environment from widespread use in commercial and bunds including Per- and Polyfluor	*0.010 roalkyl McL *0.010 *0.010	0 Subs McLG HAL+ 0 0 Subs	ug/L tances - , Unit of Measure ug/L ug/L	Analysis Violation Yes/No No	ND ND Stribut Range Low Value ND C ND C Distrib Distrib Ran n Low	ND ND ormed ion Ar High Value 0.008 0.008	ND by Ef ea 12 dings Avg. 1 Value ND ND by Ef Area 2 eadingu	31 PA Me No. of Tests 421 421 PA Me 23 \$ \$. No. c	No thod 53 Violation Yes/No No No thod 53	ND ISTRIDU Rang Low Value ND ND ND ND ND ND ND ND ND ND	tion A e of Re High Value ND ND	ND Area 1 Area 1 Avg. Value ND ND	4 No. of Tests 20 20 20	Violation Yes/No No No	ND ND Distribu Low Value ND ND	0.004 0.005 tition A e of Reas High Value 0.008 0.008 0 0.008 1	ND ND rea 15 dings Avg. N Value ND 0.002
Iuorooctanooic Acid Interic Organic Compo Interic Compound Interic Organic Acid Interic Organic Compo Interic Organic Compo Itected Compound Interic Organic Compo Itected Compound Interic Acid	widespread use in commercial and ounds including Per- and Polyfluor EPA METHOD 533 Likely Source Released into the environment from widespread use in commercial and ounds including Per- and Polyfluor EPA METHOD 533	*0.010 roalkyl McL *0.010 *0.010	O Subs HAL+ O O Subs HAL HAL	ug/L Unit of Measure ug/L ug/L tances - /	Analysis Analysis Analysis Analysis Analysis Analysis Analysis Analysis Analysis	ND ND S Perfc stribut Low Value ND C S Perfc Distrib Ram Value ND	ND ND cormed tion Ar e of Read e of Read e of Read Normed 0.008 0.008 0.008 0.008	ND by EF ea 12 dings Avg. 1 Value ND by EF Area 2 seadings • Avg. 1 h Avg.		No thod 53 Violation Yes/No No No No thod 53	ND I3 Istribu Rang Low Value ND ND I3 I3 Distril Rang Low Value ND ND ND ND ND ND ND ND ND ND	tion A e of Re High Value ND ND	ND Area 1 eadings Avg. Value ND ND Area Reading ND	55 No. of 20 20 20 20 20 20 20 20 20 20	of Violation No Violation Yes/No No No No	ND ND Distribu Rang Low Value ND ND District Ramo Value ND Value ND Value ND ND	0.004 0.005 0.005 0.005 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.005 0.005 0.05 0	ND ND ND ND Value ND 0.002 Area 30 eadings Area 30 eadings Area 30 eadings Area 30 eadings Area 30 eadings
Iuorooctanooic Acid Inthetic Organic Compo Intected Compound Iuorooctanesulfonic Acid Iuorooctanooic Acid Inthetic Organic Compo Itected Compound Ituorooctanesulfonic Acid Ituorooctanesulfonic Acid	widespread use in commercial and bunds including Per- and Polyfluor EPA METHOD 533 Likely Source Released into the environment from widespread use in commercial and bunds including Per- and Polyfluor EPA METHOD 533 Likely Source Released into the environment from	*0.010 roalkyl McL *0.010 roalkyl McL *0.010	O Subs HAL+ O O Subs HAL HAL	ug/L Unit of Measure ug/L ug/L Unit of Measure ug/L Unit of Measure	Analysis Analysis No	ND ND S Perfc stribut Low Value ND C S Perfc Distrib Ram Value ND	ND ND ormed ion Ar ion Ar High Value 0.008 0.008	ND by EF ea 12 dings Avg. 1 Value ND by EF Area 2 seadings • Avg. 1 h Avg.	31 PA Me No. of Tests 421 421 PA Me 23 \$ No. c e Tests	No thod 53 Violation Yes/No No No No thod 53	ND I3 Istribu Rang Low Value ND ND I3 I3 Distril Rang Low Value ND ND ND ND ND ND ND ND ND ND	tion A e of Re High Value ND ND	ND Area 1 eadings Avg. Value ND ND Area Reading ND	55 No. of 20 20 20 20 20 20 20 20 20 20	Violation Yes/No of Violati	ND ND Distribu Rang Low Value ND ND District Ramo Value ND Value ND Value ND ND	0.004 0.005 11100 A e of Rea High Value 0.008 0.008 C	ND ND ND ND Value ND 0.002 Area 30 eadings Area 30 eadings Area 30 eadings Area 30 eadings Area 30 eadings
Iuorooctanooic Acid Inthetic Organic Compo Intected Compound Interfection Compound Inter	widespread use in commercial and punds including Per- and Polyfluor EPA METHOD 533 Likely Source Released into the environment from widespread use in commercial and punds including Per- and Polyfluor EPA METHOD 533 Likely Source Released into the environment from widespread use in commercial and punds including Per- and Polyfluor	*0.010 roalkyl MCL *0.010 roalkyl mCL *0.010	0 Subs HAL-4 0 0 0 Subs HAL-4 HAL HAL HAL HAL HAL HAL HAL HAL HAL HAL	ug/L Unit of Measure ug/L ug/L Unit of Measure ug/L ug/L ug/L	Analysis Analysis Analysis Violation Violatio Violatio Violation No Analysis Analysis	ND ND Stribut Stribut Low Value ND C Stribut Stribut Stribut Stribut ND C Stribut Stri	ND ND crmed tion Ar e of Read e of Read Value 0.00800000000	ND by EF ea 12 dings Avg. Value ND ND by EF Area 2 eadings Valu ND ND	31 PA Me No. of Tests 421 421 PA Me 23 5 No. c 6 74 174 27 28 29 20 20 20 20 20 20 20 20 20 20	No thod 53 Violation Yes/No No No thod 53 thod 53	ND I3 Istribu Low Value ND ND I3 Distril I3 Distril ND I3 I3	tion A e of Ree High Value ND ND	ND Area 1 Area 1 Area 1 ND ND Area Reading ND ND ND ND ND ND ND ND ND ND	55 No. of 57 20 20 20 20 20 20 20 20 20 20 20 20 20	of Violation No No No No No No No No No No No No No	ND ND ND ND ND ND ND ND ND ND ND	0.004 0.005 e of Read High Value 0.008 0.008 (0.008 High 9 Value 0.005 0.003	ND ND ND ND Value ND 0.002 Area 30 eadings Area 30 eadings Area 30 eadings Area 30 eadings ND ND
Iuorooctanooic Acid Inthetic Organic Compo etected Compound fluorooctanesulfonic Acid fluorooctanooic Acid Inthetic Organic Compo tected Compound fluorooctanesulfonic Acid fluorooctanesulfonic Acid fluorooctanesulfonic Acid fluorooctanesulfonic Acid fluorooctanesulfonic Compo	widespread use in commercial and punds including Per- and Polyfluor EPA METHOD 533 Likely Source Released into the environment from widespread use in commercial and punds including Per- and Polyfluor EPA METHOD 533 Likely Source Released into the environment from widespread use in commercial and punds including Per- and Polyfluor EPA METHOD 533	*0.010 roalkyl MCL *0.010 roalkyl MCL *0.010 roalkyl roalkyl	0 Subs HAL-1 0 0 Subs HAL-1 HA	ug/L Unit of Measure ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Analysis Analysis Analysis Violation Violatio Violatio Violation No Analysis Analysis	ND ND S Perfc istribut Low Value ND C Distribut S Perfc Distribut	ND ND ionned ion Ar Value 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.003 0.003 0.003 0.003 0.003 0.003 0.003	ND by EF ea 12 Avg. 1 Value ND ND by EF Area 2 eadingy Value ND ND by EF ND	31 PA Me No. of Tests 421 421 PA Me 23 S. No. c rests 421 174 174 24 24 24 24 24 24 24 24 24 2	No thod 53 Violation Yes/No No No thod 53 thod 53	ND IS Istribu Rang Low Value ND ND IS IS IS IS IS IS IS IS IS IS	tion A e of Ree High Value ND ND	ND Area 1 aadings Avg. Value ND ND ND Area Area	55 No. of Tests 20 20 20 20 20 20 20 20 20 20	of Violation No No No No No No No No No No No No No	ND ND ND ND ND ND ND ND ND ND ND ND	0.004 0.005 0.005 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.003	ND ND ND ND Area 15 Ayg. N Value ND 0.002 Area 30 eadings a Ayg. ND ND ND ND
etected Compound fluorooctanesulfonic Acid fluorooctanooic Acid ynthetic Organic Compound rtected Compound rfluorooctanesulfonic Acid fluorooctanooic Acid	widespread use in commercial and punds including Per- and Polyfluor EPA METHOD 533 Likely Source Released into the environment from widespread use in commercial and punds including Per- and Polyfluor EPA METHOD 533 Likely Source Released into the environment from widespread use in commercial and punds including Per- and Polyfluor	*0.010 roalkyl MCL *0.010 roalkyl mCL *0.010	0 Subs McLG HAL+1 0	ug/L Unit of Measure ug/L ug/L Unit of Measure ug/L ug/L ug/L	Analysis Analysis Violation Violatio Violatio Violatio Violatio Analysis Analysis	ND ND Stribut Stribut Cow Value ND C Stribut Stribut ND Stribut Rang Stribut Rang	ND ND ormed tion Ar e of Rea High 0.00800000000	ND by EF ea 12 Avg. 1 Value ND ND by EF Area 2 eadingy Value ND ND by EF ND	31 PA Me No. of Tests 421 421 PA Me 23 \$ No. c Tests 421 421 24 24 27 No. of Tests 421 421 23 24 24 24 24 24 24 25 24 24 24 24 24 24 24 24 24 24	No thod 53 Violation Yes/No No thod 53	ND Sistribu Range ND ND Sistribu Sistribu Sistrib	tion A e of Ree High Value ND ND Dution e Value ND ND ND	ND Area 1 Value ND ND ND ND ND ND ND ND ND ND ND ND ND	55 No. of Tests 20 20 20 20 20 20 20 20 20 20	of Violation No Violation Violation No No No No No No No No Violation Viola	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.004 0.005 1000 100	ND ND ND ND Area 15 Ayg. N Value ND 0.002 Area 30 eadings a Ayg. ND ND ND ND

* Refer to page 5 for Water Quality Data Terms, Definitions and Units of Measure including; MCL, MCLG, HAL.

Regulated Perfluoroalkyl and Polyfluoroalkyl Substances Monitoring (cont'd)

	EPA METHOD 533				D	istribu	tion A	rea 44		Dist	tributi	ion Are	ea 53		D	istribu	ition A	rea 54	4
etected Compound	Likely Source	MCL	MCLG or HAL**	Unit of Measure	Violation Yes/No		<u>e of Rea</u> High Value			ation L	.ow	of Read High Value	Avg. I		Violation Yes/No		<u>e of Rea</u> High Value	adings Avg. Value	No
erfluorooctanesulfonic Acid erfluorooctanooic Acid	Released into the environment from widespread use in commercial and	<u>*0.010</u> *0.010		ug/L ug/L	<u>No</u> No	ND ND	ND ND		8 8				ND ND	22 22	<u>No</u> No	ND ND	ND ND	ND ND	
Synthetic Organic Compo	unds including Per- and Polyfluor	oalkyl s	Subst	ances - A				<u> </u>	lethod										
	EPA METHOD 533				Di		tion Ar					on Are			D		tion A		
etected Compound	Likely Source	MCL	MCLG or HAL**	Unit of Measure	Violation Yes/No	Low		<u>dings</u> Avg. No. Value Test		ation Lo	ow ł		Avg. N		Violation Yes/No	Low Value	e of Rea High Value	Avg. Value	
Perfluorooctanesulfonic Acid	Released into the environment from widespread use in commercial and	*0.010	0	ug/L ug/L		ND ND		ND 6 ND 6						<u>10</u> 10	No No	ND ND	ND ND	ND ND	_
etected Compound	EPA METHOD 533 Likely Source	MCL	MCLG	Unit of		<u>Rang</u>	e of Rea		-6 \P-	J	Range	n Area of Read	dings			Rang	on Area le of Rea	adings	
			or HAL**	Measure	Violation Yes/No	Low Value		Avg. No. Value Tes		lation L			Avg. Value		Violation Yes/No	Low Value	High Value	Avg. Value	
	Released into the environment from	*0.010		ug/L ug/L	No No	ND	ND						ND ND	2	No No	ND ND	ND ND	ND ND	
	widespread use in commercial and	*0.010	0	ag, 2		ND	ND		*										
Perfluorooctanesulfonic Acid Perfluorooctanooic Acid Synthetic Organic Compo	widespread use in commercial and								lethoc	533									
Perfluorooctanooic Acid Synthetic Organic Compo	widespread use in commercial and punds including Per- and Polyfluor EPA METHOD 533	roalkyl	Subst	ances - A					Aethoc		ution	Area \							
2erfluorooctanooic Acid	widespread use in commercial and	roalkyl	Subst			Perfo			Aethoc	533 Distrib	<mark>ution</mark> Readir า	Area \					No. of Tests		
erfluorooctanooic Acid Synthetic Organic Compo	widespread use in commercial and punds including Per- and Polyfluor EPA METHOD 533	roalkyl	Subst MCLG or	ances - A Unit of	nalysis Violation	Perfo		by EPA N Low	Aethoc	533 Distrib ange of High	<mark>ution</mark> Readir า เอ	Area \) Avg.			No. of		

** Refer to page 5 for Water Quality Data Terms, Definitions and Units of Measure including; MCL, MCLG, HAL. All perfluoroalkyl substances, besides PFOA & PFOS, are considered Unspecified Organic Contaminants (UOC) which have an MCL = 50 ug/L.

Pharmaceuticals and Personal Care Products (PPCPs) Monitoring

PPCPs are a diverse collection of thousands of chemical substances, including prescription and over the counter therapeutic drugs, veterinary drugs, fragrances, cosmetics, lotions such as sunscreen and insect repellents, diagnostic agents and vitamins. PPCPs from bodily excretion, bathing, and disposal of unwanted medications to septic systems, sewers or trash have the potential to enter our drinking water. Information on how to properly dispose of unwanted pharmaceuticals can be found at the link below:

https://nepis.epa.gov/Exe/tiff2png.cgi/P1007BCF.PNG?-r+75+g+7+D%3A%5CZYFILES%5CINDEX%20DATA%5C06THRU10%5CTI FF%5C00000773%5CP1007BCF.TIF%20

The detection and quantification of these chemicals has only recently been possible due to advances in laboratory testing technology.

Presently the EPA has no health standards or guidelines for PPCPs in drinking water and does not require testing. In 2024 all of our wells were tested for 35 PPCPs; Acesulfame-K, Carbamazepine, Dilantin, 5-(4-Hydroxyphenyl)-5-Phenylhydantoin, Ibuprofen, Imidacloprid, Meprobamate, Phenobarbital, Primidone, Saccharin, Sodium Cyclamate, Sucralose and Sulfamethoxazole were detected. The concentrations found are at levels far below medical doses, and have no known health effects.

Wherever possible, we are using granular activated carbon filtration and blending wells to remove these trace levels from the water we provide to you. Information on these pharmaceutical drugs and the results for each distribution area can be found in the tables below and on pages 13-15.

					l	Distrib	ution A	rea 1			Distrib	ution A	vrea 4		l	Distrib	ution A	rea 5	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		e of Rea High Value	Avg.	No. of Tests	Violation Yes/No		<u>e of Rea</u> High Value	dings Avg. Value	No. of Tests	Violation Yes/No		e of Rea High Value	Avg.	No. of Tests
Synthetic Organic Compoun	ds including Pesticides and Pha	rmace	utical	s															
Acesulfame-K	Incomplete removal during wastewater treatment, home septi-	50	n/a	ug/L	No	ND	1 80	ND	356	No	ND	ND	ND	8	No	ND	ND	ND	10
	Anticonvulsant, mood stabilizing drug	50	n/a	ug/L	No	ND	ND	ND	356	No	ND	ND	ND	8	No	ND	ND	ND	10
	Anti-epileptic drug	50	n/a	ug/L	No	ND	0.10	ND	356	No	ND	ND	ND	8	No	ND	ND	ND	10
5-(4-Hydroxyphenyl)-5-Phenylhydantoir	Used for determining drug levels in the body	50	n/a	ug/L	No	ND	0.31	ND	356	No	ND	ND	ND	8	No	ND	ND	ND	10
	Anti-inflammatory drug	50	n/a	ug/L	No	ND	ND	ND	356	No	ND	ND	ND	8	No	ND	ND	ND	10
Imidacloprid	Used as a pesticide	50	n/a	uğ/L	No	ND	ND	ND	356	No	ND	ND	ND	8	No	ND	ND	ND	10
Meprobamate	Anti-anxiety drug	50	n/a	ug/L	No	ND	ND	ND	356	No	ND	ND	ND	8	_No	ND	ND	ND	10
Phenobarbital	Anticonvulsant, mood stabilizing drug	50	n/a	uğ/L	No	ND	0.15	ND	356	No	ND	ND	ND	8	No	ND	ND	ND	10
Primidone	Pharmaceutical anticonvulsant drug	50	n/a	uğ/L	No	ND	0.11	ND	356	No	ND	ND	ND	8	No	ND	ND	ND	10
Saccharin	Incomplete removal during wastewater treatment, home seption	50	n/a	ug/L	No	ND	0.09	ND	356	No	ND	ND	ND	8	No	ND	ND	ND	10
Sodium Cyclamate	ncomplete removal during wastewater treatment, home septic	50	n/a	uğ/L	No	ND	0.42	ND	356	No	ND	ND	ND	8	No	ND	ND	ND	10
Sucralose	Incomplete removal during wastewater treatment, home seption	50	n/a	uğ/L	No	ND	4.00	0.09	356	No	ND	ND	ND	8	No	ND	ND	ND	10
Sulfamethoxazole	Antibiotic	50	n/a	ug/L	No	ND	0.06	ND	356	_No	ND	ND	ND	8	_No	ND	ND	ND	10_

					I	Distrib	ution A	rea 6			Distrib	ution A	rea 7		L	Distrib	ution A	rea 8	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No	<u>Range</u> Low Value	e of Rea High Value	Avg.	No. of Tests	Violation Yes/No	<u>Rang</u> Low Value	e of Rea High Value		No. of Tests	Violation Yes/No	<u>Rang</u> Low Value	<u>e of Rea</u> High Value		No. of Tests
Synthetic Organic Compoun	ds including Pesticides and Pha	rmace	utical	5															
Acesulfame-K	Incomplete removal during wastewater treatment, home seption	50	n/a	ua/L	No	ND	0.48	0.05	50	No	ND	ND	ND	4	No	ND	0.09	0.05	8
	Anticonvulsant, mood stabilizing drug	50	n/a	ug/L	No	ND	ND	ND	50	No	ND	ND	ND	4	No	ND	ND	ND	8
Dilantin	Anti-epileptic drug	50	n/a	ug/L	No	ND	ND	ND	50	No	ND	ND	ND	4	No	ND	ND	ND	8
5-(4-Hvdroxvphenvl)-5-Phenvlhvdantoir	Used for determining drug levels in the body	50	n/a	ua/L	No	ND	ND	ND	50	No	ND	ND	ND	4	No	ND	ND	ND	8
Ibuprofen	Anti-inflammatory drug	50	n/a	ug/L	No	ND	ND	ND	50	_No	ND	ND	ND	4	No	ND	ND	ND	8
Imidacloprid	Used as a pesticide	50	n/a	uğ/L	No	ND	ND	ND	50	No	ND	ND	ND	4	No	ND	ND	ND	8
Meprobamate	Anti-anxiety drug	50	n/a	uğ/L	No	ND	ND	ND	50	No	ND	ND	ND	4	No	ND	ND	ND	8
Phenobarbital	Anticonvulsant, mood stabilizing drug	50	n/a	ug/L	No	ND	ND	ND	50	No	ND	ND	ND	4	No	ND	ND	ND	8
Primidone	Pharmaceutical anticonvulsant drug	50	n/a	ug/L	No	ND	ND	ND	50	No	ND	ND	ND	4	No	ND	ND	ND	8
Saccharin	Incomplete removal during wastewater treatment, home seption	50	n/a	ug/L	No	ND	ND	ND	50	No	ND	ND	ND	4	No	ND	ND	ND	8
Sodium Cyclamate	ncomplete removal during wastewater treatment, home septic	50	n/a	ug/L	No	ND	ND	ND	50	No	ND	ND	ND	4	No	ND	ND	ND	8
Sucralose	Incomplete removal during wastewater treatment, home septic		n/a	ug/L	No	ND	0.48	ND	50	_No	ND	0.05	ND	4	No	ND	ND	ND	8
Sulfamethoxazole	Antibiotic	50	n/a	uğ/L	No	ND	ND	ND	50	No	ND	ND	ND	4	No	ND	ND	ND	8

					l.	Distrib	ution A	rea 9		D	istribu	ition A	rea 1(D	D	istribu	ition A	rea 11	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		e of Rea High Value		No. of Tests	Violation Yes/No	<u>Rang</u> Low Value	e of Rea High Value	dings Avg. Value	No. of Tests	Violation Yes/No		e of Rea High Value		No. of Tests
Synthetic Organic Compoun	ds including Pesticides and Pha	rmace	utical	s															
Acesulfame-K	Incomplete removal during wastewater treatment, home septi-	50	n/a	ug/L	No	ND	0 10	ND	24	No	ND	0.49	0.08	40	No	ND	2.64	0.12	45
Carbamazepine	Anticonvulsant, mood stabilizing drug		n/a	ug/L	No	ND	ND	ND	24	No	ND	ND	ND	40	No	ND	ND	ND	45
	Anti-epileptic drug	50	n/a	ug/L	No	ND	ND	ND	24	No	ND	ND	ND	40	No	ND	ND	ND	45
5-(4-Hydroxyphenyl)-5-Phenylhydantoir	Used for determining drug levels in the body	50	n/a	ug/L	No	ND	ND	ND	24	No	ND	ND	ND	40	No	ND	ND	ND	45
	Anti-inflammatory drug	50	n/a	ug/L	No	ND	ND	ND	24	No	ND	ND	ND	40	No	ND	ND	ND	45
Imidacloprid	Used as a pesticide	50	n/a	uğ/L	No	ND	ND	ND	24	No	ND	ND	ND	40	No	ND	ND	ND	45
Meprobamate	Anti-anxiety drug	50	n/a	ug/L	No	ND	ND	ND	24	No	ND	ND	ND	40	No	ND	ND	ND	45
Phenobarbital	Anticonvulsant, mood stabilizing drug	50	n/a	ug/L	No	ND	ND	ND	24	_No	ND	ND	ND	40	No	ND	ND	ND	45
Primidone	Pharmaceutical anticonvulsant drug	50	n/a	ug/L	No	ND	ND	ND	24	No	ND	ND	ND	40	No	ND	ND	ND	45
Saccharin	Incomplete removal during wastewater treatment, home seption	50	n/a	ug/L	No	ND	ND	ND	24	No	ND	ND	ND	40	No	ND	ND	ND	45
Sodium Cyclamate	incomplete removal during wastewater treatment, home septic	50	n/a	ug/L	No	ND	ND	ND	24	No	ND	ND	ND	40	No	ND	0.06	ND	45
Sucralose	Incomplete removal during wastewater treatment, home seption	50	n/a	ug/L	No	ND	0.05	ND	24	No	ND	0.11	ND	40	No	ND	0.34	ND	45
Sulfamethoxazole	Antibiotic	50	n/a	ug/L	<u>No</u>	ND	ND	ND	24	No	ND	ND	ND	40	_No	ND	ND	ND	45

Pharmaceuticals and Personal Care Products (PPCPs) Monitoring (cont'd)

					D	istribu	ition A	rea 12	2	D	istribu	ition A	rea 14	4	D	istribu	ition A	rea 15	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		<u>e of Rea</u> High Value		No. of Tests	Violation Yes/No		<u>e of Rea</u> High Value		No. of Tests	Violation Yes/No		<u>e of Rea</u> High Value	Avg.	No. of Tests
Synthetic Organic Compoun	ds including Pesticides and Pha	rmace	utical	s															
Acesulfame-K	Incomplete removal during wastewater treatment, home septi	50	n/a	ug/L	No	ND	2.03	0 11	291	No	ND	0.35	0.05	15	No	ND	1.64	0.16	189
	Anticonvulsant, mood stabilizing drug	50	n/a	ug/L	No	ND	ND	ND	291	No	ND	ND	ND	15	No	ND	0.06	ND	189
	Anti-epileptic drug	50	n/a	ug/L	No	ND	0.09	ND	291	No	ND	ND	ND	15	No	ND	ND	ND	189
	Used for determining drug levels in the body	50	n/a	ua/L	No	ND	0.14	ND	291	No	ND	ND	ND	15	No	ND	ND	ND	189
Ibuprofen	Anti-inflammatory drug	50	n/a	ug/L	No	ND	0.09	ND	291	No	ND	ND	ND	15	No	ND	ND	ND	189
Imidacloprid	Used as a pesticide	50	n/a	ug/L	No	ND	0.10	ND	291	No	ND	ND	ND	15	No	ND	ND	ND	189
Meprobamate	Anti-anxiety drug	50	n/a	ua/L	No	ND	0.07	ND	291	No	ND	ND	ND	15	No	ND	ND	ND	189
Phenobarbital	Anticonvulsant, mood stabilizing drug	50	n/a	ug/L	No	ND	0.09	ND	291	No	ND	ND	ND	15	No	ND	ND	ND	189
Primidone	Pharmaceutical anticonvulsant drug	50	n/a	uğ/L	No	ND	0.06	ND	291	No	ND	ND	ND	15	No	ND	ND	ND	189
Saccharin	Incomplete removal during wastewater treatment, home septi	50	n/a	uğ/L	No	ND	0.05	ND	291	No	ND	ND	ND	15	No	ND	0.23	ND	189
Sodium Cyclamate	ncomplete removal during wastewater treatment, home seption	50	n/a	ug/L	No	ND	0.13	ND	291	No	ND	ND	ND	15	No	ND	ND	ND	189
Sucralose	Incomplete removal during wastewater treatment, home septi		n/a	ug/L	No	ND	2.43	0.22	291	No	ND	0.14	ND	15	No	ND	3.30	0.26	189
Sulfamethoxazole	Antibiotic	50	n/a	uğ/L	_No_	ND	ND	ND	291	No	ND	ND	ND	15	No	ND	ND	ND	189

					D	istribu	tion Ar	rea 23	1	D	istribu	ition A	rea 20	6	D	istribu	ition A	rea 30	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No	Range Low Value	e of Read High Value	Avg.	No. of Tests	Violation Yes/No	<u>Rang</u> Low Value	<u>e of Rea</u> High Value	dings Avg. Value	No. of Tests	Violation Yes/No	<u>Rang</u> Low Value	<u>e of Rea</u> High Value		No. of Tests
Synthetic Organic Compoun	ds including Pesticides and Pha	rmace	utical	S															
Acesulfame-K	Incomplete removal during wastewater treatment, home septid	50	n/a	ug/L	No	ND	0.89	0 15	145	No	ND	0.65	0.30	28	No	ND	0.81	0.12	140
	Anticonvulsant, mood stabilizing drug	50	n/a	ug/L	No	ND	ND	ND	145	No	ND	ND	ND	28	No	ND	ND	ND	140
	Anti-epileptic drug	50	n/a	ug/L	No	ND	ND	ND	145	No	ND	ND	ND	28	No	ND	ND	ND	140
5-(4-Hydroxyphenyl)-5-Phenylhydantoir	Used for determining drug levels in the body	50	n/a	ug/L	No	ND	ND	ND	145	No	ND	ND	ND	28	No	ND	ND	ND	140
Ibuprofen	Anti-inflammatory drug	50	n/a	ug/L	No	ND	ND	ND	145	No	ND	ND	ND	28	No	ND	ND	ND	140
	Used as a pesticide	50	n/a	uğ/L	No	ND	0.16	ND	145	No	ND	ND	ND	28	No	ND	0.19	ND	140
Meprobamate	Anti-anxiety drug	50	n/a	uğ/L	No	ND	ND	ND	145	No	ND	ND	ND	28	No	ND	ND	ND	140
Phenobarbital	Anticonvulsant, mood stabilizing drug		n/a	uğ/L	No	ND	ND	ND	145	No	ND	ND	ND	28	No	ND	ND	ND	140
Primidone	Pharmaceutical anticonvulsant drug	50	n/a	uğ/L	No	ND	ND	ND	145	No	ND	ND	ND	28	No	ND	ND	ND	140
Saccharin	Incomplete removal during wastewater treatment, home seption	50	n/a	ug/L	No	ND	ND	ND	145	<u>No</u>	ND	1.33	0.10	28	No	ND	0.08	ND	140
Sodium Cyclamate	Incomplete removal during wastewater treatment, home septic		n/a	ug/L	No	ND	0.05	ND	145	_No	ND	ND	ND	28	_No	ND	0.15	ND	140
	Incomplete removal during wastewater treatment, home septic		n/a	uğ/L	No	ND	0.99	0.15	145	<u>No</u>	ND	0.72	0.27	28	No	ND	1.20	0.18	140
Sulfamethoxazole	Antibiotic	50	n/a	ug/L	<u>No</u>	ND	ND	ND	145	No	ND	ND	ND	28	No	ND	ND	ND	140

					D	istribu	tion A	rea 32	2	D	istribu	ition A	rea 34	4	D	istribu	ition A	rea 35	5
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		e of Rea High Value	<u>dings</u> Avg. Value		Violation Yes/No		e of Rea High Value			Violation Yes/No		<u>e of Rea</u> High Value		No. of Tests
Synthetic Organic Compoun	ds including Pesticides and Pha	rmace	utical	S															
Acesulfame-K	Incomplete removal during wastewater treatment, home septid	50	n/a	ua/L	No	ND	ND	ND	8	No	ND	ND	ND	7	No	ND	ND	ND	8
	Anticonvulsant, mood stabilizing drug	50	n/a	ug/L	No	ND	ND	ND	8	No	ND	ND	ND	7	No	ND	ND	ND	8
	Anti-epileptic drug	50	n/a	ug/L	No	ND	ND	ND	8	No	ND	ND	ND	7	No	ND	ND	ND	8
5-(4-Hvdroxvphenvl)-5-Phenvlhvdantoir	Used for determining drug levels in the body	50	n/a	uɑ/L	No	ND	ND	ND	8	No	ND	ND	ND	7	No	ND	ND	ND	8
	Anti-inflammatory drug	50	n/a	ug/L	No	ND	ND	ND	8	No	ND	ND	ND	7	No	ND	ND	ND	8
	Used as a pesticide	50	n/a	ug/L	No	ND	ND	ND	8	No	ND	ND	ND	7	No	ND	ND	ND	8
Meprobamate	Anti-anxiety drug	50	n/a	uğ/L	No	ND	ND	ND	8	No	ND	ND	ND	7	No	ND	ND	ND	8
Phenobarbital	Anticonvulsant, mood stabilizing drug	50	n/a	uğ/L	No	ND	ND	ND	8	No	ND	ND	ND	7	No	ND	ND	ND	8
Primidone	Pharmaceutical anticonvulsant drug	50	n/a	ug/L	No	ND	ND	ND	8	No	ND	ND	ND	7	No	ND	ND	ND	8
Saccharin	Incomplete removal during wastewater treatment, home seption	50	n/a	uğ/L	No	ND	ND	ND	8	No	ND	ND	ND	7	No	ND	ND	ND	8
Sodium Cyclamate	ncomplete removal during wastewater treatment, home septic	50	n/a	ug/L	No	ND	ND	ND	8	No	ND	ND	ND		No	ND	ND	ND	8
Sucralose	Incomplete removal during wastewater treatment, home seption		n/a	ug/L	No	ND	0.16	ND	8	No	ND	0.11	0.05		No	ND	0.08	ND	8
Sulfamethoxazole	Antibiotic	50	n/a	uğ/L	No	ND	ND	ND	8	No	ND	ND	ND	7	_No	ND	ND	ND	8

					D	istribu	tion A	rea 44		D	istribu	ition A	rea 5:	3	D	istribu	ition A	rea 54	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		e of Rea High Value	Avg.	No. of Tests	Violation Yes/No		<u>e of Rea</u> High Value		No. of Tests	Violation Yes/No		<u>e of Rea</u> High Value	Avg.	No. of Tests
Synthetic Organic Compoun	ds including Pesticides and Pha	rmace	utical	3															
Acesulfame-K	Incomplete removal during wastewater treatment, home septi	50	n/a	ug/L	No	ND	0.08	ND	6	No	ND	ND	ND	14	No	ND	ND	ND	24
	Anticonvulsant, mood stabilizing drug	50	n/a	ug/L	No	ND	ND	ND	6	No	ND	ND	ND	14	No	ND	ND	ND	24
	Anti-epileptic drug	50	n/a	ug/L	No	ND	ND	ND	6	No	ND	ND	ND	14	No	ND	ND	ND	24
5-(4-Hydroxyphenyl)-5-Phenylhydantoir	Used for determining drug levels in the body	50	n/a	ug/L	No	ND	ND	ND	6	No	ND	ND	ND	14	No	ND	ND	ND	24
	Anti-inflammatory drug	50	n/a	ug/L	No	ND	ND	ND	6	No	ND	ND	ND	14	No	ND	ND	ND	24
Imidacloprid	Used as a pesticide	50	n/a	ug/L	No	ND	ND	ND	6	No	ND	ND	ND	14	No	ND	ND	ND	24
Meprobamate	Anti-anxiety drug	50	n/a	uğ/L	No	ND	ND	ND	6	No	ND	ND	ND	14	No	ND	ND	ND	24
Phenobarbital	Anticonvulsant, mood stabilizing drug	50	n/a	uğ/L	No	ND	ND	ND	6	No	ND	ND	ND	14	No	ND	ND	ND	24
Primidone	Pharmaceutical anticonvulsant drug	50	n/a	uğ/L	No	ND	ND	ND	6	No	ND	ND	ND	14	No	ND	ND	ND	24
Saccharin	Incomplete removal during wastewater treatment, home septi-	50	n/a	uğ/L	No	ND	ND	ND	6	_No	ND	ND	ND	14	No	ND	ND	ND	24_
Sodium Cyclamate	ncomplete removal during wastewater treatment, home seption	50	n/a	ug/L	No	ND	ND	ND	6	No	ND	ND	ND	14	No	ND	ND	ND	24
Sucralose	Incomplete removal during wastewater treatment, home septi	50	n/a	uğ/L	No	ND	0.15	0.08	6	No	ND	0.10	ND	14	No	ND	ND	ND	24
Sulfamethoxazole	Antibiotic	50	n/a	uğ/L	No	ND	ND	ND	6	_No	ND	ND	ND	14	No	ND	ND	ND	24

Pharmaceuticals and Personal Care Products (PPCPs) Monitoring (cont'd)

						istribu	ition A	rea 57	'	D	istribu	ition A	rea 64	l.	D	istribu	ition A	rea 67	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		e of Rea High Value	Avg.	No. of Tests	Violation Yes/No		<u>e of Rea</u> High Value		No. of Tests	Violation Yes/No		<u>e of Rea</u> High Value	Avg.	No. of Tests
Synthetic Organic Compoun	ds including Pesticides and Pha	rmace	utical	s															
Acesulfame-K	Incomplete removal during wastewater treatment, home septi	50	n/a	ug/L	No	ND	0.20	0.11	6	No	ND	0.22	0.06	10	No	ND	ND	ND	3
	Anticonvulsant, mood stabilizing drug		n/a	ug/L	No	ND	ND	ND	6	No	ND	ND	ND	10	No	ND	ND	ND	3
Dilantin	Anti-epileptic drug	50	n/a	ua/L	No	ND	ND	ND	6	No	ND	ND	ND	10	No	ND	ND	ND	3
5-(4-Hydroxyphenyl)-5-Phenylhydantoir	Used for determining drug levels in the body	50	n/a	ug/L	No	ND	ND	ND	6	No	ND	ND	ND	10	No	ND	ND	ND	3
Ibuprofen	Anti-inflammatory drug	50	n/a	uğ/L	No	ND	ND	ND	6	No	ND	ND	ND	10	No	ND	ND	ND	3
Imidacloprid	Used as a pesticide	50	n/a	uğ/L	No	ND	ND	ND	6	No	ND	ND	ND	10	No	ND	ND	ND	3
Meprobamate	Anti-anxiety drug	50	n/a	uğ/L	No	ND	ND	ND	6	No	ND	ND	ND	10	No	ND	ND	ND	3
Phenobarbital	Anticonvulsant, mood stabilizing drug		n/a	uğ/L	No	ND	ND	ND	6	No	ND	ND	ND	10	No	ND	ND	ND	3
Primidone	Pharmaceutical anticonvulsant drug	50	n/a	ug/L	No	ND	ND	ND	6	<u>No</u>	ND	ND	ND	10	No	ND	ND	ND	3
Saccharin	Incomplete removal during wastewater treatment, home septi	50	n/a	ug/L	No	ND	ND	ND	6	No	ND	0.06	ND	10	No	ND	ND	ND	3
Sodium Cyclamate	incomplete removal during wastewater treatment, home seption	50	n/a	uğ/L	No	ND	ND	ND	6	No	ND	ND	ND	10	No	ND	ND	ND	3
Sucralose	Incomplete removal during wastewater treatment, home septi	50	n/a	ug/L	No	ND	0.58	0.24	6	_No	ND		0.13	10	No	ND	ND	ND	3
Sulfamethoxazole	Antibiotic	50	n/a	ug/L	No	ND	ND	ND	6	<u>No</u>	ND	ND	ND	10	No	ND	ND	ND	3

					Dis	tributio	on Are	a EFV	/D	Dist	tributi	on Are	a RSV	VD	Dist	tributio	on Are	a SBV	VD
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		e of Rea High Value		No. of Tests	Violation Yes/No		<u>e of Rea</u> High Value		No. of Tests	Violation Yes/No		<u>e of Rea</u> High Value		No. of Tests
Synthetic Organic Compoun	ds including Pesticides and Pha	rmace	utical	S															
Acesulfame-K	Incomplete removal during wastewater treatment, home seption	50	n/a	ug/L	No	ND	ND	ND	4	No	ND	ND	ND	2	No	ND	ND	ND	4
	Anticonvulsant, mood stabilizing drug	50	n/a	ug/L	No	ND	ND	ND	4	No	ND	ND	ND	2	No	ND	ND	ND	4
	Anti-epileptic drug	50	n/a	ug/L	No	ND	ND	ND	4	No	ND	ND	ND	2	No	ND	ND	ND	4
5-(4-Hydroxyphenyl)-5-Phenylhydantoir	Used for determining drug levels in the body	50	n/a	ug/L	No	ND	ND	ND	4	No	ND	ND	ND	2	No	ND	ND	ND	4
	Anti-inflammatory drug	50	n/a	uğ/L	No	ND	ND	ND	4	No	ND	ND	ND	2	No	ND	ND	ND	4
Imidacloprid	Used as a pesticide	50	n/a	ug/L	No	ND	ND	ND	4	No	ND	ND	ND	2	No	ND	ND	ND	4
Meprobamate	Anti-anxiety drug	50	n/a	uğ/L	No	ND	ND	ND	4	No	ND	ND	ND	2	No	ND	ND	ND	4
Phenobarbital	Anticonvulsant, mood stabilizing drug	50	n/a	uğ/L	No	ND	ND	ND	4	No	ND	ND	ND	2	No	ND	ND	ND	4
Primidone	Pharmaceutical anticonvulsant drug	50	n/a	uğ/L	No	ND	ND	ND	4	No	ND	ND	ND	2	No	ND	ND	ND	4
Saccharin	Incomplete removal during wastewater treatment, home septic	50	n/a	uğ/L	No	ND	ND	ND	4	No	ND	ND	ND	2	No	ND	ND	ND	4
Sodium Cyclamate	ncomplete removal during wastewater treatment, home septic	50	n/a	ug/L	No	ND	ND	ND	4	<u>No</u>	ND	ND	ND	2	No	ND	ND	ND	4
Sucralose	Incomplete removal during wastewater treatment, home septic		n/a	ug/L	No	ND	ND	ND	4	No	ND	ND	ND	2	No	ND	ND	ND	4
Sulfamethoxazole	Antibiotic	50	n/a	uğ/L	No	ND	ND	ND	4	_No	ND	ND	ND	2	No	ND	ND	ND	4

							Distribution .	Area WNWD		
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No	Low Value	<u>Range of Re</u> High Value	<u>adings</u> Avg. Value	No. of Tests	
Synthetic Organic Compoun	ds including Pesticides and Pha	rmace	utical	5						
Acesulfame-K	Incomplete removal during wastewater treatment, home septie	50	n/a	ua/L	No	ND	0.48	0.17	12	
	Anticonvulsant, mood stabilizing drug		n/a	ug/L	No	ND	ND	ND	12	
Dilantin	Anti-epileptic drug	50	n/a	ug/L	No	ND	ND	ND	12	
5-(4-Hvdroxvphenvl)-5-Phenvlhvdantoir	Used for determining drug levels in the body	50	n/a	ug/L	No	ND	ND	ND	12	
	Anti-inflammatory drug	50	n/a	ug/L	No	ND	0.09	ND	12	
Imidacloprid	Used as a pesticide	50	n/a	uğ/L	No	ND	ND	ND	12	
Meprobamate	Anti-anxiety drug	50	n/a	uğ/L	No	ND	ND	ND	12	
	Anticonvulsant, mood stabilizing drug		n/a	ug/L	No	ND	ND	ND	12	
Primidone	Pharmaceutical anticonvulsant drug	50	n/a	ug/L	No	ND	ND	ND	12	
Saccharin	Incomplete removal during wastewater treatment, home seption	50	n/a	uğ/L	No	ND	0.13	ND	12	
Sodium Cyclamate	incomplete removal during wastewater treatment, home septic		n/a	ug/L	No	ND	ND	ND	12	
Sucralose	Incomplete removal during wastewater treatment, home seption	50	n/a	uğ/L	No	ND	1.26	0.28	12	
Sulfamethoxazole	Antibiotic	50	n/a	ug/L	No	ND	ND	ND	12	

SAFE DISPOSAL OF PHARMACEUTICALS

Pharmaceutical contamination of drinking water is an important emerging concern. Changing our practices today can prevent future pollution of our only source of drinking water. Become a part of the solution to help stop the threat of discarded pharmaceuticals finding their way into our groundwater, bays and estuaries. Simply take your unused medications to any of the safe disposal locations on Long Island: Walgreens and CVS have safe drop boxes and accept medical disposals at specific locations across Long Island. Also, most police precincts in Suffolk County will accept prescription drugs for disposal. A list can be found here:

https://www.health.ny.gov/professionals/narcotic/medication_drop_boxes/suffolk.htm

Disinfectants and Disinfection Byproducts

					E.	Distrib	ution A	rea 1		L	Distrib	ution A	rea 4		I	Distrib	ution A	Area 5	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		e of Reac High Value		No. of Tests	Violation Yes/No		e of Read High Value		No. of Tests	Violation Yes/No		e of Read High Value	Avg.	No. of Tests
Disinfectant and Disinf	ection Byproducts (**MCI	L is the	sum	of the	four st	arred	d con	ipou	nds :	shown	belo	w)							
Bromochloroacetic Acid	Byproduct of chlorination	50	n/a	ua/L	No	ND	1.22	ND	68	No	ND	ND	ND	1	No	ND	0.89	ND	9
Bromodichloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	68	No	ND	ND	ND	1	No	ND	ND	ND	9
Bromodichloromethane	**See Below	**80	n/a	ug/L	No	ND	8.47	0.29	474	No	ND	0.62	ND	8	No	ND	1.94	ND	57
Bromoform	**See Below	**80	n/a	uğ/L	_No	ND	3.59	ND	474	No	ND	ND	ND	8	No	ND	3.05	0.30	57
Chlorate	Byproduct of chlorination	n/a	n/a	mg/L	No	ND	0.48	0.10	361	No	0.04	0.10	0.06	8	No	0.05	0.16	0.08	10
Chlorodibromoacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	68	No	ND	ND	ND	1_	No	ND	ND	ND	9
Chloroform	**See Below	**80	n/a	uğ/L	No	ND	10.01	0.50	474	No	ND	2.36	0.53	8	No	ND	0.73	ND	57
Dibromoacetic Acid	Byproduct of chlorination	*60	n/a	uğ/L	No	ND	1.25	ND	68	No	ND	ND	ND	1_	No	ND	0.77	ND	9
Dibromochloromethane	**See Below	**80	n/a	uğ/L	No	ND	7.58	0.26	474	No	ND	ND	ND	8	No	ND	3.87	0.33	57
Dichloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	2.05	ND	68		ND	ND	ND	1_	No	ND	ND	ND	9
Free Chlorine	Used as a disinfectant	4	n/a	mg/L	_No	ND	1.70	0.93	3,869		0.70		1.10	44	No	0.38	1.50	0.94	150
Monochloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	68		ND	ND	ND	1	No	ND	1.50	ND	9
Trichloroacetic Acid	Byproduct of chlorination	*60	n/a	uğ/L	No	ND	1.21	ND	68	No	0.64	0.64	0.64	1	No	ND	ND	ND	9

(*MCL is the sum of the starred compounds shown above)

					l	Distrib	ution A	rea 6		l	Distrib	ution A	rea 7			Distrib	ution A	Area 8	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		<u>e of Read</u> High Value		No. of Tests	Violation Yes/No		<u>e of Rea</u> High Value	Avg.	No. of Tests	Violation Yes/No		e of Read High Value	Avg.	
Disinfectant and Disi	nfection Byproducts (**MC	L is the	sum	of the	four s	tarre	d con	npou	inds :	showr	n belo	ow)							
Bromochloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	1.24	ND	27	No	ND	0.81	ND	9	No	ND	ND	ND	1
Bromodichloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	27	No	ND	ND	ND	9	No	ND	ND	ND	1
Bromodichloromethane	**See Below	**80	n/a	uğ/L	No	ND	4.94	ND	222	No	ND	1.22	ND	19	No	ND	ND	ND	12
Bromoform	**See Below	**80	n/a	ug/L	No	ND	2.00	ND	222	No	ND	1.16	ND	19	No	ND	ND	ND	12
Chlorate	Byproduct of chlorination	n/a	n/a	mg/L	No	0.05	0.19	0.08	49	No	0.05	0.09	0.07	4	No	0.04	0.09	0.06	8
Chlorodibromoacetic Acid	Byproduct of chlorination	50	n/a	ug/L	_No	ND	ND	ND	27	No	ND	ND	ND	9	No	ND	ND	ND	1
Chloroform	**See Below	**80	n/a	ug/L	No	ND	4.43	ND	222	No	ND	0.77	ND	19	No	ND	0.29	ND	12
Dibromoacetic Acid	Byproduct of chlorination	*60	n/a	uğ/L	_No	ND	1.01	ND	27	No	ND	0.41	ND	9	No	ND	ND	ND	1
Dibromochloromethane	**See Below	**80	n/a	ug/L	_No	ND	4.62	ND	222	No	ND	1.90	0.29	19	No	ND	ND	ND	12
Dichloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	1.58	ND	27	No	ND	ND	ND	9	No	ND	ND	ND	1
	Used as a disinfectant	4	n/a	ma/L	No	0.29	1.50	0.98	689	No	0.37	1.46	0.97	162	No	0.72	1.40	1.05	60
Free Chlorine																			
Free Chlorine Monochloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	27	No	ND	ND	ND	9	No	ND	ND	ND	1

						Distrib	ution A	rea 9		D	istribu	tion A	rea 10)	D	istribu	ition A	rea 11	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		of Read High Value		No. of Tests	Violation Yes/No		of Read High Value	Avg.	No. of Tests	Violation Yes/No		of Read High Value	Avg.	No. of Tests
Disinfectant and Disinf	ection Byproducts (**MCL	. is the	sum	of the	four s	tarrec	l con	ıpou	nds :	shown	belo	w)							
Bromochloroacetic Acid Bromodichloroacetic Acid Bromodichloroacetic Acid Bromoform Chloroform Chlorodibromoacetic Acid Chloroform Dibromochloromethane Dichloroacetic Acid Free Chlorine Monochloroacetic Acid Trichloroacetic Acid	Byproduct of chlorination Byproduct of chlorination **See Below Byproduct of chlorination Byproduct of chlorination **See Below Byproduct of chlorination **See Below Byproduct of chlorination Used as a disinfectant Byproduct of chlorination Byproduct of chlorination Byproduct of chlorination	50 50 **80 **80 **80 *60 **80 *60 **80 *60 *60 *60	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	No No No No No No No No No No No	ND ND ND ND ND ND ND ND ND 0.40 ND ND	ND ND 1.67 0.44 0.17 ND 2.51 ND 0.98 ND 1.43 ND ND	ND ND 0.10 0.28 ND 0.28 ND 0.94 ND 0.94 ND	21 21 94 21 21 94 21 94 21 369 21 21	No No No No	0.04 ND ND ND ND ND 0.33 ND	ND 1.15 0.31 0.17 ND 1.35 0.47 0.94 1.44 1.52 ND	ND ND 0.08 ND 0.27 ND ND ND 0.94 ND	13 13 124 124 13 13 124 13 124 13 689 13 13	No No No	ND ND 0.03 ND ND ND ND 0.48 ND ND	ND ND 0.81 0.90 0.18 ND 0.98 ND 1.00 ND 1.64 ND ND	ND ND 0.10 ND ND ND ND 1.06 ND	8 194 194 42 8 194 8 194 8 194 8 552 8 8

(*MCL is the sum of the starred comp	pounds shown abov	<u>/e)</u>
--------------------------------------	-------------------	------------

					L.	Distribu	ution A	rea 12	2	D	istribu	ition A	rea 14	4	D	istribu	ition A	rea 1	5
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		e of Read High Value		No. of Tests	Violation Yes/No		e of Read High Value		No. of Tests	Violation Yes/No		e of Rea High Value	Avg.	No. of Tests
Disinfectant and Disi	nfection Byproducts (**MCI	L is the	sum	of the	four s	tarre	d con	npou	inds s	shown	belo	w)							
Bromochloroacetic Acid	Byproduct of chlorination	50	n/a	ua/L	_No	ND	1.55	ND	78	No	ND	ND	ND	7	No	ND	ND	ND	24
Bromodichloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	78	No	ND	ND	ND	7	No	ND	ND	ND	24
Bromodichloromethane	**See Below	**80	n/a	uğ/L	No	ND	7.67	0.26	575		ND	0.99	ND	25	No	ND	1.66	ND	344
Bromoform	**See Below	**80	n/a	ug/L	_No	ND	2.49	ND	575	No	ND	0.31	ND	25	No	ND	1.02	ND	344
Chlorate	Byproduct of chlorination	n/a	n/a	mg/L	No	ND	0.51	0.10	285	No	0.04	0.12	0.07	15	No	0.03	0.62	0.13	185
Chlorodibromoacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	78	No	ND	ND	ND	7	No	ND	ND	ND	24
Chloroform	**See Below	**80	n/a	uğ/L	No	ND	7.00	0.46	575	No	ND	1.18	0.36	25	No	ND	2.67	0.42	344
Dibromoacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	1.01	ND		No	ND	ND	ND	7	No	ND	ND	ND	24
Dibromochloromethane	**See Below	**80	n/a	uğ/L	_No	ND	6.56	ND	575	No	ND	0.79	ND	25	No	ND	1.27	ND	344
Dichloroacetic Acid	Byproduct of chlorination	*60	n/a	uğ/L	No	ND	2.48	ND	78		ND	ND	ND	7	No	ND	ND	ND	24
Free Chlorine	Used as a disinfectant	4	n/a	mg/L	No	0.26	1.65	0.96	2,747	No	0.30	1.49	0.94	269	No	0.27	1.55	1.00	2,003
Monochloroacetic Acid	Byproduct of chlorination	*60	n/a	ua/L	No	ND	ND	ND	78	No	ND	ND	ND	7	No	ND	ND	ND	24
Monochioroacettic Acid	Byproduct of chlorination	*60					0.67	ND		No									

**Total Trihalomethanes (TTHMs – chloroform, bromodichloromethane, dibromochloromethane, and bromoform) are a by-product of drinking water chlorination needed to kill harmful organisms. TTHMs are formed when source water contains organic matter

Disinfectants and Disinfection Byproducts (cont'd)

					L	Distribu	ition A	rea 23	}	C	Distribu	ution A	rea 2	6	D	istribu	tion A	rea 30	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		e of Read High Value	Avg.	No. of Tests	Violation Yes/No		<u>e of Rea</u> High Value	Avg.	No. of Tests	Violation Yes/No		e of Read High Value	Avg.	No. of Tests
Disinfectant and Disin	nfection Byproducts (**MC	L is the	sum	of the	four s	tarreo	d con	npou	nds :	shown	ı belo	ow)							
Bromochloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	23	No	ND	0.97	ND	7	No	ND	2.15	0.84	17
Bromodichloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	23	No	ND	ND	ND	7	No	ND	ND	ND	17
Bromodichloromethane	**See Below	**80	n/a	ug/L	No	ND	2.80	ND	242	No	ND	3.65	0.39	59	No	ND	5.12	0.29	198
Bromoform	**See Below	**80	n/a	uğ/L	No	ND	0.99	ND	242	No	ND	3.73	0.33	59	No	ND	3.52	0.30	198
Chlorate	Byproduct of chlorination	n/a	n/a	mg/L	No	0.04	0.42	0.14	143	No	0.09	0.27	0.17	32	No	ND	0.38	0.14	124
Chlorodibromoacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	23	No	ND	ND	ND	7	No	ND	2.05	ND	17
Chloroform	**See Below	**80	n/a	ug/L	No	ND	4.50	1.06	242	No	0.26	3.20	1.01	59	No	ND	2.66	0.40	198
Dibromoacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	0.69	ND	23	No	ND	1.20	0.65	7	No	ND	2.07	0.95	17
Dibromochloromethane	**See Below	**80	n/a	uğ/L	No	ND	2.72	ND	242	No	ND	5.42	0.49	59	No	ND	7.15	0.40	198
Dichloroacetic Acid	Byproduct of chlorination	*60	n/a	uğ/L	No	ND	ND	ND	23	No	ND	ND	ND	7	No	ND	2.11	ND	17
Free Chlorine	Used as a disinfectant	4	n/a	mg/L	No	0.38	1.52	0.95	1,241	No	0.40	1.46	0.90	255	No	0.14	1.50	0.92	821
Monochloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	23	No	ND	ND	ND	7	No	ND	ND	ND	17
	Byproduct of chlorination	*60			No	ND	ND	ND	23	No	ND	ND	ND		No	ND	0.95	ND	17

(*MCL is the sum of the starred compounds shown above

					E	Distribu	ution A	rea 32			Distrib	ution A	rea 34	4		istribu	ition A	rea 35	5
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		<u>e of Read</u> High Value	Avg.		Violation Yes/No	-	<u>e of Rea</u> High Value		No. of Tests	Violation Yes/No		e of Rea High Value	Avg.	
Disinfectant and Disi	nfection Byproducts (**MC	L is the	sum	of the	four s	tarre	d con	npou	nds :	showi	ı belo	ow)							
Bromochloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	1	No	ND	ND	ND	2	No	ND	ND	ND	1
Bromodichloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	1	No	ND	ND	ND	2	No	ND	ND	ND	1
Bromodichloromethane	**See Below	**80	n/a	uğ/L	No	ND	0.34	ND	10		ND	1.48	0.26	11	No	ND	ND	ND	29
Bromoform	**See Below	**80	n/a	ug/L	No	ND	ND	ND	10	No	ND	0.46	ND	11	No	ND	ND	ND	29
Chlorate	Byproduct of chlorination	n/a	n/a	mg/L	No	0.08	0.23	0.15	7	No	0.06	0.13	0.10	7	No	0.08	0.28	0.16	8
Chlorodibromoacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	1_	No	ND	ND	ND	2	No	ND	ND	ND	1
Chloroform	**See Below	**80	n/a	ug/L	No	ND	4.19	1.66	10	No	0.26	2.13	1.66	11	No	ND	ND	ND	29
Dibromoacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	1	No	ND	ND	ND	2	No	ND	ND	ND	1
Dibromochloromethane	**See Below	**80	n/a	ug/L	No	ND	0.31	ND	10	No	ND	1.50	0.27	11	No	ND	ND	ND	29
Dichloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	1	No	ND	ND	ND	2	No	ND	ND	ND	1
							4 00	4 0 5	0.4		0.40						4 50	4 00	93
Free Chlorine	Used as a disinfectant	4	n/a	mg/L	No	0.60	1.32	1.05	61	No	0.49	1.34	0.97	105	No	0.71	1.50	1.08	93
	Used as a disinfectant Byproduct of chlorination	4 *60	n/a n/a	mg/L ug/L	No No	0.60 ND	1.32 ND	1.05 ND	<u> </u>	No No	0.49 ND	1.34 ND	0.97 ND	<u>105</u> 2	_No _No	0.71 ND	1.50 ND	1.08 ND	<u>93</u>

(*MCL is the sum of the starred compounds shown above)

					D	istribu	ition A	rea 44	ļ	D	istribu	tion A	rea 5	3	D	istribu	ition A	rea 54	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		e of Read High Value	Avg.	No. of Tests	Violation Yes/No		of Read High Value		No. of Tests	Violation Yes/No		e of Read High Value	Avg.	No. of Tests
Disinfectant and Disin	fection Byproducts (**MC	L is the	sum	of the	four st	tarred	d con	npou	nds :	shown	belo	w)							
Bromochloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	1	No	ND	ND	ND	9	No	ND	ND	ND	6
Bromodichloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	1	No	ND	0.87	ND	9	No	ND	ND	ND	6
Bromodichloromethane	**See Below	**80	n/a	uğ/L	No	ND	1.22	0.26	10	No	ND	1.61	0.46	24	No	ND	1.90	0.39	28
Bromoform	**See Below	**80	n/a	uğ/L	No	ND	0.52	ND	10	No	ND	ND	ND	24	No	ND	ND	ND	28
Chlorate	Byproduct of chlorination	n/a	n/a	mg/L	No	0.10	0.19	0.14	6	No	0.04	0.57	0.09	22	No	ND	1.05	0.20	38
Chlorodibromoacetic Acid	Byproduct of chlorination	50	n/a	uɑ/L	No	ND	ND	ND	1	No	ND	ND	ND	9	No	ND	ND	ND	6
Chloroform	**See Below	**80	n/a	ug/L	No	0.79	3.06	1.88	10	No	ND	7.44	1.30	24	No	ND	4.26	0.74	28
Dibromoacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	1	No	ND	ND	ND	9	No	ND	ND	ND	6
Dibromochloromethane	**See Below	**80	n/a	ua/L	No	ND	1.40	0.27	10	No	ND	0.61	ND	24	No	ND	0.83	ND	28
Dichloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	1	No	ND	3.74	1.77	9	No	ND	1.42	ND	6
Free Chlorine	Used as a disinfectant	4	n/a	mg/L	No	0.40	1.45	0.84	56	No	0.59	1.50	1.03	82	No	0.33	1.50	1.06	140
Monochloroacetic Acid	Byproduct of chlorination	*60	n/a	ua/L	No	ND	ND	ND	1	No	ND	ND	ND	9	No	ND	ND	ND	6
Trichloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	1	No	0.65	6.29	2.56	9	No	0.55	1.17	0.95	6
(*MCL is the sum of th	e starred compounds sho	wn abo	ve)																

					D	istribu	ition A	rea 57	7	D	istribu	tion A	rea 64	ļ	D	istribu	ition A	rea 61	1
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		e of Read High Value	Avg.	No. of Tests	Violation Yes/No		e of Read High Value	Avg.	No. of Tests	Violation Yes/No		e of Read High Value	Avg.	No. of Tests
Disinfectant and Disinfe	ction Byproducts (**MCL	is the	sum	of the	four st	arreo	d con	npou	inds :	shown	belo	w)							
Bromochloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	1	No	ND	0.95	ND		No	ND	0.82	ND	2
Bromodichloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	1	No	ND	ND	ND	7	No	ND	ND	ND	2
Bromodichloromethane	**See Below	**80	n/a	uğ/L	_No	ND	2.69	0.46		No	ND	1.82	0.51	20	No	ND	0.70	0.32	3
Bromoform	**See Below	**80	n/a	uğ/L	No	ND	1.44	0.30	10	No	ND	1.85	0.45	20	No	ND	ND	ND	3
Chlorate	Byproduct of chlorination	n/a	n/a	mg/L	No	0.09	0.25	0.17	8	No	0.09	0.22	0.14	12	No	0.07	0.10	0.08	3
Chlorodibromoacetic Acid	Byproduct of chlorination	50	n/a	ug/L	_No	ND	ND	ND	1	No	ND	ND	ND	7	No	ND	ND	ND	2
Chloroform	**See Below	**80	n/a	ug/L	No	0.28	3.44	1.69	10	No	1.22	3.63	2.57	20	No	ND	0.93	0.39	3
Dibromoacetic Acid	Byproduct of chlorination	*60	n/a	uğ/L	No	0.49	0.49	0.49	1	No	0.42	0.90	0.62	7	No	ND	ND	ND	2
Dibromochloromethane	**See Below	**80	n/a	ua/L	No	ND	3.19	0.53	10	No	ND	3.33	0.79	20	No	ND	0.75	0.33	3
Dichloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	1	No	ND	ND	ND		No	ND	ND	ND	2
Free Chlorine	Used as a disinfectant	4	n/a	mg/L	_No	0.45	1.42	0.86	57	No	0.38	1.20	0.94	31	No	0.70	1.19	0.98	5
Monochloroacetic Acid	Byproduct of chlorination	*60	n/a	ua/L	No	ND	ND	ND	1	No	ND	ND	ND	7	No	ND	ND	ND	2
Trichloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	1	No	ND	ND	ND	7	No	ND	ND	ND	2
(*MCL is the sum of the	starred compounds show	n abo	ve)	Ť															

**Total Trihalomethanes (TTHMs – chloroform, bromodichloromethane, dibromochloromethane, and bromoform) are a by-product of drinking water chlorination needed to kill harmful organisms. TTHMs are formed when source water contains organic matter

Disinfectants and Disinfection Byproducts (cont'd)

					Dis	tributi	on Are	a EFW	D	Dis	tributio	on Are	a RSV	/D	Dis	tributio	on Area	a SBN	/D
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		of Read High Value	Avg. I	No. of Tests	Violation Yes/No		of Read High Value	Avg.	No. of Tests	Violation Yes/No		e of Read High Value	Avg.	
Disinfectant and Disir	fection Byproducts (**MCL	. is the	sum	of the	four st	arrec	l con	npou	nds :	shown	belo	w)							
Bromochloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	14	No	ND	ND	ND	9	No	ND	ND	ND	10
Bromodichloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	_No	ND	ND	ND	14		ND	ND	ND	9	No	ND	ND	ND	10
Bromodichloromethane	**See Below	**80	n/a	ug/L	No	0.29	2.51	0.93	16	No	ND	0.96	0.43	10	No	ND	0.35	ND	12
Bromoform	**See Below	**80	n/a	uğ/L	_No	ND	5.35	0.49	16	No	ND	ND	ND	10	No	ND	ND	ND	12
Chlorate	Byproduct of chlorination	n/a	n/a	mg/L	No	0.06	0.13	0.08	12	No	0.06	0.11	0.08	10	No	0.03	0.09	0.07	12
Chlorodibromoacetic Acid	Byproduct of chlorination	50	n/a	ug/L	_No	ND	ND	ND	14	No	ND	ND	ND	9	No	ND	ND	ND	10
Chloroform	**See Below	**80	n/a	ug/L	_No	0.36	8.86	1.43	16		0.53	1.66	1.07	10	No	ND	0.56	0.34	12
Dibromoacetic Acid	Byproduct of chlorination	*60	n/a	uğ/L	No	ND	1.34	ND	14		ND	ND	ND	9	No	ND	ND	ND	10
Dibromochloromethane	**See Below	**80	n/a	uğ/L	_No	0.31	2.49	0.78	16	No	ND	0.67	0.33	10	No	ND	0.29	ND	12
Dichloroacetic Acid	Byproduct of chlorination	*60	n/a	uğ/L	No	ND	ND	ND	14	No	ND	ND	ND	9	No	ND	ND	ND	10
Free Chlorine	Used as a disinfectant	4	n/a	mg/L	No	0.42	1.38	0.84	156		0.77	1.36	0.99	56	No	0.40	1.32	0.93	104
Monochloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	14	No	ND	ND	ND	9	No	ND	ND	ND	10
Trichloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	14	No	ND	ND	ND	9	No	ND	ND	ND	10
(*MCL is the sum of t	he starred compounds show	vn abo	ve)																

							Distribution Area	VNWD	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No	Low Value	<u>Range of Readings</u> High Value	Avg. Value	No. of Tests
Disinfectant and Disi	nfection Byproducts (**MC	L is the	sum	of the f	our starred o	compounds sl	nown below)		
Bromochloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	0.95	ND	5
romodichloroacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	5
romodichloromethane	**See Below	**80	n/a	ug/L	No	ND	1.40	0.28	27
Bromoform	**See Below	**80	n/a	uğ/L	No	ND	0.50	ND	27
hlorate	Byproduct of chlorination	n/a	n/a	mg/L	No	0.08	0.55	0.20	14
hlorodibromoacetic Acid	Byproduct of chlorination	50	n/a	ug/L	No	ND	ND	ND	5
Chloroform	**See Below	**80	n/a	uğ/L	No	ND	1.90	0.68	27
bibromoacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	0.70	0.41	5
Dibromochloromethane	**See Below	**80	n/a	ug/L	No	ND	1.41	0.30	27
ichloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	5
	Used as a disinfectant	4	n/a	mg/L	No	0.66	1.52	0.97	34
ree Chlorine						NID	NID		-
ree Chlorine Ionochloroacetic Acid	Byproduct of chlorination	*60	n/a	ug/L	No	ND	ND	ND	5

**Total Trihalomethanes (TTHMs – chloroform, bromodichloromethane, dibromochloromethane, and bromoform) are a by-product of drinking water chlorination needed to kill harmful organisms. TTHMs are formed when source water contains organic matter

LEAD AND COPPER INFORMATION

Lead

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. The Suffolk County Water Authority is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time.

You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes.

If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact SCWA at 631-698-9500. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at: https://www.epa.gov/safewater/lead

A Lead Service Line (LSL) is defined as any portion of pipe that is made of lead which connects the water main to the building inlet. An LSL may be owned by the water system, owned by the property owner, or both. The inventory includes both potable and nonpotable SLs within a system. In accordance with the federal Lead and Copper Rule Revisions (LCRR) our system has prepared a lead service line inventory and have made it publicly accessible by (include instructions on how to access the inventory (including inventories consisting only of a statement declaring that the distribution system has no lead, galvanized requiring replacement, or lead status unknown service lines)) and/or visiting our website at: https://www.scwa.com/leadandcopper/

Lead and Copper Rule (LCR) Monitoring

This EPA regulation requires public water systems to monitor drinking water at specific customers' taps every three years, to check the effectiveness of our pH treatment and to ensure the quality of our drinking water. If lead levels exceed 15 parts per billion (ppb) or copper levels exceed 1.3 parts per million (ppm) in more than 10% of these samples, we must improve our corrosion control (pH treatment). SCWA has successfully met the Lead and Copper Rule requirements we are required to test every 3 years. Lead and copper testing was not performed in 2024. Additional information on our pH treatment can be found on page 44.

Naturally Occuring Con	npounds as well as Contaminants	_	_			Distribu	ition Ai	rea 1		Distrib	ution /	Area 4	_	Distri	bution A	rea 5
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No			ngs Avg. No.of Value Tests	Violation Yes/No		<u>e of Read</u> High Value		No. of Tests	Rar Violation Low of Yes/NoValu		<u>lings</u> Avg. No. Value Tests
Inorganics																
Alkalinity to pH 4.5 mgCaCO3/L	Naturally occurring	n/a	n/a	mg/L		ND 122		7.7 335				41.5	8	No <u>35.2</u>	108.0	59.8 10
Aluminum	Naturallý occurring	n/a	n/a			ND 0.2			No	ND		0.06	8	No ND	0.11	0.05 20
Ammonia, free	Some fertilizers, septic systems	n/a	n/a			ND 0.2			No	ND	ND	ND	8	No ND	ND	ND 10
Arsenic	Erosion of natural deposits	10	0	uğ/L		ND 2.			_No	ND	ND	ND	8	No ND	ND	ND 20
Barium	Erosion of natural deposits	2	2	mg/L		ND 0.0			_No	ND	ND	ND	8	No ND	0.20	0.13 20
Boron	Naturally occurring	n/a	n/a			ND 0.6			No	ND		ND	38	No ND	ND	ND 12
Bromide	Naturally occurring	n/a	n/a			ND 165			No	ND	ND	ND	8	No ND	88.8	ND 10
Calcium	Naturally occurring, pH control	n/a	n/a			ND 62			<u>No</u>	ND	0.8	ND	38	<u>No 12.5</u>	54.6	30.5 12
Chloride	Naturally occurring salt water intrusion road salt	250	n/a			3.7 131			<u>No</u>	3.2		3.6	8	<u>No 11.7</u>	142.7	73.7 47
Chromium, total	Natural deposits	100	100			ND 1.			<u>No</u>	ND	ND	ND	8	No ND	7.3	1.3 20
CO2, calculated	Naturally occurring	n/a	n/a			ND 24			<u>No</u>	2.8		8.2	8	<u>No 1.7</u>	20.3	8.5 10
Cobalt-59	Naturallý occurring	n/a	n/a			ND 3.			<u>No</u>	ND		ND	8	No ND	ND	ND 20
Color, Apparent	Naturallý occurring metals or minerals	15	n/a			ND 12			<u>No</u>	ND	7	ND	8	No ND	10	ND 10
Copper	Household plumbing, leaching of wood preservatives	AL=1		mg/L		ND 0.2			No	ND	ND	ND	8	No ND	0.08	0.02 20
Fluoride	Erosion of natural deposits	2.2	n/a			ND 0.			<u>No</u>	ND	ND 2.3	ND	8	No ND	ND	ND 47
Hardness, total	Measure of the calcium and magnesium	n/a	n/a			2.8 190			<u>No</u>	ND ND		<u>ND</u> 0.15	38	No 49.9	186.8	109.5 12
Hexavalent Chromium	Erosion of natural deposits	100	n/a			ND 1.7			<u>No</u> Yes	200		283	<u>8</u> 38	<u>No 0.14</u>		2.26 11
<u>Iron</u> Lithium	Naturally occurring		n/a n/a			ND 95			<u>No</u>	3.5	4.3	<u>203</u> 3.9	<u> </u>	No ND	164	40 12
	Naturallý occurring	n/a	n/a			ND 8.			_No	_3.5 ND		_ <u>3.9</u> ND	38	<u>No</u> <u>ND</u> No <u>4.38</u>	1.8	1.3 20
Magnesium	Naturallý occurring	n/a 300).22 8.6 ND 90				ND		ND	38	<u>No 4.38</u> No ND	12.38 10	8.11 12 ND 12
Manganese Molvbdenum	Naturally occurring	n/a				ND 90 ND NI			No	ND		ND	8		ND	ND 12 ND 20
Nickel	Alloys, coatings manufacturing, batteries	n/a				ND NI			_No	ND	1.5	ND	8		<u> </u>	1.1 20
Nitrate	Natural deposits, fertilizer, septic tanks	10		mg/L		ND 5.7		0 655 70 385	No			ND	8	<u>No</u> 3.51	7.54	5.89 47
Nitrite	Natural deposits, fertilizer, septic tanks	1	+10	ma/L		ND NI			No	ND		ND	8	No ND	ND	ND 47
Perchlorate	Fertilizers, solid fuel propellant, fireworks	18				ND 1.9			No	ND		ND	8	<u>No</u> 0.48		0.83 10
pH	Measure of water acidity or alkalinity	n/a	n/a			6.5 8.			No	6.6	7.5	71	9	No 6.5	8.0	7.3 22
pH, field	Measure of water acidity or alkalinity	n/a	n/a			6.0 8.			No	7.0		7.4	51	No 7.0	8.2	7.5 158
Phosphate, total	Added to keep iron in solution	n/a	n/a			ND 3.8				0.29		1.89	38	No ND	ND	ND 12
Potassium	Naturally occurring	n/a	n/a			0.23 5.6			No	1.14		1.28	38	No 0.92		1.58 12
Silicon	Naturally occurring	n/a	n/a			2.6 8.			No	4.2	4.4	4.3	8	No 6.8	7.9	7.3 20
Sodium	Naturally occurring	n/a	n/a			2.3 60			No	19.4	26.8	23.5	38	No 8.7	71.7	32.9 12
Specific Conductance	Total of naturally occurring minerals	n/a	n/a			35 53			No	99		111	8	No 97	730	336 10
Strontium-88	Naturally occurring	n/a	n/a				99 0.0		No	ND		ND	8	No 0.038		0.110 20
Sulfate	Naturally occuring	250	n/a			ND 50			No	7.5	8.4	8.1	8	No 5.6		12.2 47
Titanium	Naturally occurring	n/a	n/a	uğ/L		ND 8.			No	ND	ND	ND	38	No ND	5.9	ND 12
Total Organic Carbon (TOC	Naturallý occurring	n/a	n/a	ma/L		ND 0.			No	ND	0.9	0.9	2	No ND	ND	ND 2
Turbidity	Silts and clays in aquifer	5	n/a			ND 3.8			No	0.8	0.45	ND	8	No ND		0.66 10
Uranium	Naturally occurring	30	n/a			ND NI	D NI	D 655	_No	ND	ND	ND	8	No ND	ND	ND 20
Vanadium	Naturallý occurring	n/a	n/a			ND 1.	1 N		No	ND	ND	ND	8	No ND	ND	ND 20
Zinc	Naturallý occurring, plumbing	5	n/a	mg/L		ND 0.0)7 N		No	ND	ND	ND	8	No ND	0.03	ND 20

Synthetic Organic Compounds including Pesticides and Herbicides

		= 0									NID	NID	ND	0				
Alachlor ESA	Degradation product of Alachlor	50	n/a	ug/L	No	ND	ND	ND 33	39	No_	ND	ND	ND	8	_No_	_ND_	ND	ND 12
	Degradation product of Alachlor	50	n/a	ug/L	No	ND	ND	ND 33	9	No_	ND	ND	ND	8	_No_	_ND	ND	ND 12
Aldicarb Sulfoxide	Pesticide used on row crops	4	1	uğ/L	No	ND	ND	ND 33	5	No .	ND	ND	ND	8	No	_ND	ND	ND 10
Chlordane, Total	Residue of banned termiticide	2	n/a	uq/L	No	ND	ND	ND 33	6	No_	ND	ND	ND	8	No	_ND	ND	ND 10
Diethyltoluamide (DEET)	nsect Repellent	50	n/a	uq/L	No	ND	0.23	ND 28	8	No	ND	ND	ND	8	_No_	ND	ND	ND 8
1,4-Dioxane	Used in manufacturing processes	1	n/a	uď/L	No	ND	0.72	0.09 39	91	No .	ND	ND	ND	8	No	ND	0.64	0.25 29
Metalaxvl	Used as a fungicide	50	n/a	ua/L	No	ND	ND	ND 28	8	No .	ND	ND	ND	8	No	ND	ND	ND 8
	Degradation product of Metolachlor	50	n/a	uq/L	No	ND	ND	ND 33	9	No	ND	ND	ND	8	_No_	ND	ND	ND 12
Metolachlor OA	Degradation product of Metolachlor	50	n/a	uğ/L	No	ND	ND	ND 33	9	No .	ND	ND	ND	8	No	ND	ND	ND 12
Tetrachloroterephthalic Acid	Used as a herbicide	50	n/a	uğ/L	No	ND	ND	ND 33	6	<u>No</u>	ND	ND	ND	8	<u>No</u>	_ND_	ND	ND 12

			1 1						
Chlorobenzene	From industrial chemical factories	5	n/a	ug/L	<u>No ND ND ND 474</u>	<u>No</u> ND ND 8		ND ND	ND 57
	Used as a refrigerant	5	n/a	ug/L	NO_ND ND ND 474	<u>No</u> ND ND 8	No	ND ND	ND 57
	From industrial chemical factories	5	n/a	uğ/L	No ND ND ND 474	<u>No</u> ND ND 8	No	ND ND	ND 57
Dichlorodifluoromethane	Refrigerant, aerosol propellant	5	n/a	uğ/L	NO ND ND ND 474	NO ND ND 8	No	ND ND	ND 57
1,1-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uğ/L	No_ND 0.97 ND 474	<u>No</u> ND ND 8	No	ND 0.60	0.26 57
1.2-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uq/L	No ND ND ND 474	NO ND ND 8	No	ND ND	ND 57
	From industrial chemical factories	5	n/a	uğ/L	No ND 0.38 ND 474	NO ND ND 8	No	ND ND	ND 57
1,2-Dichloropropane	From industrial chemical factories	5	0	uğ/L	No ND ND ND 474	<u>No</u> ND ND 8	No	ND ND	ND 57
Ethyl Benzene	From paint on inside of water storage tank	5	n/a	uq/L	No ND ND ND 474	No ND ND ND 8	No	ND 0.17	ND 57
Isopropylbenzene	Used as a solvent	5	n/a	uğ/L	No ND 0.14 ND 474	NO ND ND 8	No	ND ND	ND 57
Methylethylketone	Used in the coating industry	50	n/a	ug/L	No ND ND ND 474	<u>No</u> ND ND 8	No	ND ND	ND 57
Methyl-Tert-Butyl Ether	Gasoline	10	n/a	uq/L	No ND 0.57 ND 474	No ND ND ND 8	<u>No</u>	ND ND	ND 57
o-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND 0.23 ND 474	NO ND ND 8	No	ND 1.19	ND 57
p,m-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND 0.52 ND 474	NO ND ND 8	No	ND 0.55	ND 57
Tetrachloroethene	Factories, dry cleaners, spills	5	0	uq/L	No ND 0.34 ND 474	No ND ND ND 8	No	ND ND	ND 57
	From paint on inside of water storage tank	5	n/a	uğ/L	No ND 0.16 ND 474	No ND ND ND 8	No	ND ND	ND 57
1,2,4-Trichlorobenzene	Discharge from textile-finishing factories	5	n/a	uğ/L	No ND 0.27 ND 474	NO ND ND 8	No	ND ND	ND 57
1.1.1-Trichloroethane	Metal degreasing sites, factories	5	n/a	uğ/L	No ND ND ND 474	No ND ND 8	No	ND ND	ND 57
Trichloroethene	Metal degreasing sites, factories	5	0	uğ/L	No ND 0.30 ND 474	No ND ND ND 8	No	ND ND	ND 57
Trichlorofluoromethane	Dry cleaning, propellant, fire extinguishers	5	n/a	uğ/L	No ND ND ND 474	NO ND ND 8	No	ND ND	ND 57
1,2,3-Trichloropropane	Degreasing agent, manufacturing	5	n/a	uğ/L	No ND 0.78 ND 474	No ND ND ND 8	No	ND ND	ND 57
1,1,2-Trichlorotrifluoroethane	Solvent in paints and varnishes	5	' n/a '	uğ/L	No ND ND ND 474	No ND ND ND 8	No	ND 0.31	ND 57

Naturally Occuring Com	pounds as well as Contaminants				l	Distrib	ution A	rea 6		Dis	stributio	n Area '	7	Distrit	oution A	rea 8
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		e of Read High Value	Avg. I	No. of Tests	Violation L	Range of F .ow Hig alue Val	gh Avg.			g <u>e of Reac</u> High e Value	lings Avg. No. Value Tests
Inorganics																
Alkalinity to pH 4.5 mgCaCO3/L Aluminum	Naturally occurring Naturally occurring	n/a	n/a n/a	mg/L ma/L					45 52	<u>No 59.</u> No 0.0			<u>4</u> 4	<u>No 25.8</u> No ND	34.2 0.03	29.3 8 ND 8
Ammonia. free	Some fertilizers, septic systems	n/a	n/a	mg/L					47	No NE) ND	ND	4	No ND	ND	ND 8
Arsenic	Erosion of natural deposits	10	0	uq/L					52	No NE		ND	4	No ND	ND	ND 8
Barium	Erosion of natural deposits	2	2	ma/L				.02	52	No NE			4	No ND	ND	ND 8
Boron	Naturally occurring	n/a	n/a	mg/L					45	No NE		ND	4	No ND	ND	ND 8
Bromide	Naturally occurring	n/a	n/a	uq/L					49	No 53			4	No ND	ND	ND 8
Calcium	Naturally occurring, pH control	n/a	n/a	mg/L					45	No 26			4	No 9.8	16.9	12.6 8
Chloride	Naturally occurring salt water intrusion road salt	t 250		ma/L					218	No 19			26	No 5.9	17.2	11.4 8
Chromium, total	Natural deposits	100	100	ug/L					52	No NE		1.4	4	No ND	ND	ND 8
CO2. calculated	Naturally occurring	n/a	n/a	ma/L					45	No 3.7	⁷ 9.1	6.8	4	No 4.5	14.7	6.8 8
Cobalt-59	Naturally occurring	n/a	n/a	ug/L					52	No NE) ND	ND	4	No ND	ND	ND 8
Color, Apparent	Naturally occurring metals or minerals	15	n/a	Color Units		ND .		ND	45	No NE) 7	ND	4	No ND	5	ND 8
Copper	Household plumbing, leaching of wood preservatives	AL=	1. 1.3	ma/L	No N	VD 0.	05 N		52	No NE		ND	4	No ND	ND	ND 8
Fluoride	Erosion of natural deposits	2.2	n/a	ma/L					219	No NE		ND	26	No ND	ND	ND 8
Hardness, total	Measure of the calcium and magnesium	n/a	n/a	ma/L	No 2	3.9 12	3.6 7	7.1	45	<u>No 87</u>		0 96.7	4	No 28.0	53.2	38.7 8
Hexavalent Chromium	Erosion of natural deposits	100		uğ/L				.58	49	No_NE			4	No ND	0.26	0.14 8
Iron	Naturally occurring	300		ug/L	No N	ND 3		ND .	45	<u>No</u> NE			4	No ND	ND	ND 8
Lithium	Naturally occurring	n/a	n/a	ug/L				ND	52	<u>No</u> NE		ND		No ND	ND	ND 8
Magnesium	Naturally occurring	n/a	n/a	mg/L				.69	45	<u>No 5.3</u>				No 0.80	2.78	1.73 8
Manganese	Naturally occurring	300		uğ/L				ND	45	<u>No</u> NE		ND		No ND	ND	ND 8
Molybdenum	Naturally occurring	n/a		ug/L				ND	52	No_NE		ND_	4	No ND	ND	ND 8
Nickel	Alloys, coatings manufacturing, batteries	n/a		uğ/L).6	52	No_NE		0.5	4	No 0.6	1.3	0.9 8
Nitrate	Natural deposits, fertilizer, septic tanks			mğ/L		ND 8.			219	<u>No 6.0</u>			26	<u>No 1.44</u>	3.90	2.63 8
Nitrite	Natural deposits, fertilizer, septic tanks	18	1	mg/L					219	<u>No</u> NE		ND 0.79	<u>26</u> 4	No ND	_ND	ND 8
Perchlorate	Fertilizers, solid fuel propellant, fireworks		n/a	ug/L		<u>10 2</u>			<u>59</u> 70	<u>No</u> NE No 6.7			<u> 4 </u>	No 0.60 No 6.6	2.05	<u>1.13</u> 8 7.09
pH. field	Measure of water acidity or alkalinity Measure of water acidity or alkalinity	n/a n/a	n/a	pH Units				<u>'.3</u> '4 7	70	$N_0 = 0.7$			165	<u>No 6.6</u> No 7.0	7.1	7.0 9 7.3 66
Phosphate, total	Added to keep iron in solution	n/a	n/a	mg/L		<u>,0 0</u> ,		.4 / 1D	45			ND	4	<u>No 7.0</u>	ND	<u>7.3 66</u> ND 8
Potassium	Naturally occurring	n/a	n/a	ma/L				.10	45	No 1.0			4	<u>No 0.51</u>	0.97	0.73 8
Silicon	Naturally occurring	n/a	n/a	ma/L				.10 5.9	52	No 6.9		74	4	No 3.7	4.0	3.9 8
Sodium	Naturally occurring	n/a	n/a	mg/L				1.1	45	No 11			4	<u>No</u> 4.8	9.7	7.3 8
Specific Conductance	Total of naturally occurring minerals	n/a		umho/cm					45	No 24			4	No 84	174	123 8
Strontium-88	Naturally occurring	n/a	n/a	mg/L			.125 0		52		0.10				0.049	0.032 8
Sulfate	Naturally occuring	250	n/a	mg/L		ND 24		2.3 2	219	No 10			26	No ND	7.6	3.7 8
Titanium	Naturally occurring	n/a	n/a	ug/L				<u>vD</u>	45	No NE		ND	4	No ND	ND	ND 8
Total Organic Carbon (TOC)	Naturally occurring	n/a	n/a	ma/L				ND	5	No NE) ND	ND	2	No ND	ND	ND 2
Turbidity	Silts and clavs in aquifer	5	n/a	NŤŪ		VD 0.		ND	45	No NE	0.41		4	No ND	0.72	ND 8
Uranium	Naturally occurring	30	n/a	ug/L				ND	52	No NE			4	No ND	ND	ND 8
Vanadium	Naturally occurring	n/a	n/a	ug/L				ND	52	No NE		ND	4	No ND	ND	ND 8
Zinc	Naturallý occurring, plumbing	5	n/a	mg/L				ND.	52	No NE) ND	ND	4	No ND	ND	ND 8

Synthetic Organic Compounds including Pesticides and Herbicides

Alachlor ESA	Degradation product of Alachlor	50	n/a	ua/L	No) ND	51	No	ND	ND N	JD 4	No	ND	ND	ND 8
Alachlor OA	Degradation product of Alachlor	50	n/a	ug/L ug/L		ND NE	D ND	51	No			ID 4	No		ND	ND 8
	Pesticide used on row crops		1	ug/L ug/L	No		D ND	51	No			ID 4	No		ND	ND 8
	Residue of banned termiticide	2	n/a	ug/L	No		D ND	47	No	ND		ID 4	No			ND 8
	Insect Repellent	50	n/a	ug/L	No	ND NE	D ND	43	No	ND	ND N	ID 4	No	ND	ND	ND 8
	Used in manufacturing processes	1	n/a	ua/L	No	ND 1.0		139	No	ND	0.48 0	.08 14	No	ND	0.21	0.11 14
Metalaxyl	Used as a fungicide	50	n/a	uď/L	No	ND NE) ND	43	No	ND	ND N	ID 4	No	ND	ND	ND 8
	Degradation product of Metolachlor	50	n/a	ug/L	No	ND NE) ND	51	No	ND		ID 4	No	ND	ND	ND 8
	Degradation product of Metolachlor	50	n/a	uğ/L	No	ND ND) ND	51	No	ND		ID 4	No	ND	ND	ND 8
Tetrachloroterephthalic Acid	Used as a herbicide	50	n/a	uğ/L	_No_	ND 1.7	9 ND	63	No	ND_	ND N	ID 4	No	ND	ND	ND 8

	1					·									
Chlorobenzene	From industrial chemical factories	5	n/a	ug/L	No ND	ND	ND 22	2 <u>No</u>	ND		ND 19		ND	ND	ND 12
Chlorodifluoromethane	Used as a refrigerant	5	n/a	uğ/L	No ND	ND	ND 22	2 <u>No</u>	ND	ND	ND 19	No	ND	ND	ND 12
	From industrial chemical factories	5	n/a	uğ/L	No ND	1.36	ND 22	2 <u>No</u>	ND	ND	ND 19	No	ND	ND	ND 12
Dichlorodifluoromethane	Refrigerant, aerosol propellant	5	n/a	uğ/L	No ND	ND	ND 22	2 <u>No</u>	ND_	ND	ND 19	No	ND	ND	ND 12
	Degreaser, gasoline, manufacturing	5	n/a	ug/L	No ND	2.04	0.44 22	2 <u>No</u>	ND	0.62	0.32 19	No	ND	ND	ND 12
	Degreaser, gasoline, manufacturing	5	n/a	uq/L	No ND	0.44	ND 22	2 <u>No</u>	ND	ND	ND 19	No	ND	ND	ND 12
1.1-Dichloroethene	From industrial chemical factories	5	n/a	uğ/L	No ND	0.28	ND 22	2 <u>No</u>	ND_	ND	ND 19	No	ND	ND	0.27 12
1.2-Dichloropropane	From industrial chemical factories	5	0	ug/L	No ND	0.53	ND 22	2 <u>No</u>	ND	ND	ND 19	No	ND	ND	ND 12
Ethyl Benzene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 22	2 <u>No</u>	ND	ND	ND 19	No	ND	ND	ND 12
Isopropylbenzene	Used as a solvent	5	n/a	uğ/L	No ND	ND	ND 22	2 <u>No</u>	ND_	ND	ND 19	No	ND	ND	ND 12
Methylethylketone	Used in the coating industry	50	n/a	uğ/L	No ND	ND	ND 22	2 <u>No</u>	ND_		ND 19	No	_ND	ND	ND 12
	Gasoline	10	n/a	uq/L	No ND	ND	ND 22	2 <u>No</u>	ND	ND	ND 19	No	_ND	0.48	ND 12
o-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 22	2 <u>No</u>	ND	ND	ND 19	No	ND	ND	ND 12
p.m-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 22	2 <u>No</u>	ND_	ND	ND 19	No	ND	ND	ND 12
Tetrachloroethene	Factories, dry cleaners, spills	5_	0	uq/L	No ND	1.90	ND 22	2 <u>No</u>	ND		ND 19	No	_ND	ND	ND 12
	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 22	2 <u>No</u>	ND_	ND	ND 19	No	ND	ND	ND 12
1,2,4-Trichlorobenzene	Discharge from textile-finishing factories	5	n/a	uğ/L	No ND	ND	ND 22	2 <u>No</u>	ND_	ND	ND 19	No	ND	ND	ND 12
	Metal degreasing sites, factories	5	n/a	uq/L	No ND	0.25	ND 22	2 <u>No</u>	ND		ND 19	No	_ND	ND	ND 12
Trichloroethene	Metal degreasing sites, factories	5	0	uğ/L	No ND	0.53	ND 22	2 <u>No</u>	ND	ND	ND 19	No	ND	0.35	ND 12
Trichlorofluoromethane	Dry cleaning, propellant, fire extinguishers	5	n/a	uğ/L	No ND	ND	ND 22	2 <u>No</u>	ND_		ND 19		ND	ND	ND 12
	Degreasing agent, manufacturing	5	n/a	uq/L	No ND	ND	ND 22	2 <u>No</u>	ND		ND 19		ND	ND	ND 12
1,1,2-Trichlorotrifluoroethane	Solvent in paints and varnishes	5	' n/a '	uğ/L	No ND	1.30	ND 22	2 <u>No</u>	ND	ND	ND 19	No	ND	ND	ND 12

Naturally Occuring Com	pounds as well as Contaminants					Distrib	ution Are	a 9	l l	Distrib	ution A	rea 10		Distrib	ution A	rea 11
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violatior Yes/No		of Reading High A Value Va	vg. No. of	Violation Yes/No		<u>e of Read</u> High Value	Avg. N		<u>Ran</u> Iation Low Yes/NoValue		<u>dings</u> Avg. No. Value Tests
Inorganics																
Alkalinity to pH 4.5 mgCaCO3/L	Naturally occurring	n/a		mg/L	No	37.8 9 [.]	1.8 64.				66.4	46.9 3			112.4	57.1 42
Aluminum	Naturally occurring	n/a		mg/L			06 0.0		_No			0.03 4			0.09	0.05 52
Ammonia, free	Some fértilizers, septic systems	n/a			No	ND N			_No	ND		ND 4			ND	ND 44
Arsenic	Erosion of natural deposits	10		uğ/L		ND N			_No	ND	ND	ND 4			ND	ND 52
Barium	Erosion of natural deposits	2		mg/L	No	ND 0.	03 0.02		_No			ND 4			0.07	0.03 52
Boron	Naturally occurring	n/a				ND N			No	ND		ND 3			ND	ND 52
Bromide	Naturallý occurring	n/a		uğ/L		ND 57			_No			ND 4				69.0 42
Calcium	Naturally occurring, pH control	<u> n/a</u>				9.0 36						22.7 3				27.3 52
Chloride	Naturally occurring, salt water intrusion, road sa	lt 250				2.6 45			No			20.9 20				43.5 165
Chromium, total	Natural deposits	100		uğ/L			.9 0.9		<u>No</u>	ND	3.1	0.7 4			3.1	ND 52
CO2, calculated	Naturally occurring	_ n/a				0.8 20			<u>No</u>	1.1	31.6	9.0 3			25.4	8.3 42
Cobalt-59	Naturally occurring	<u>n/a</u>		uğ/L		ND N			<u>No</u>	ND	2.1	ND 4			3.1	0.6 52
Color, Apparent	Naturally occurring metals or minerals	15				ND			<u>No</u>	ND	5	ND 3				ND 42
Copper	Household plumbing, leaching of wood preservatives	AL=1		mg/L		ND 0.			<u>No</u>	ND ND	0.06 ND	ND 4 ND 20		<u>_ND</u>	ND	ND 52
Fluoride	Erosion of natural deposits	2.2				ND N			<u>No</u>			<u>ND 20</u> 74.1 3		<u>ND</u>	ND_	ND 165
Hardness, total	Measure of the calcium and magnesium	100				36.8 13						<u>74.1 3</u> 0.61 4				86.4 <u>52</u> 0.40 42
Hexavalent Chromium	Naturally occurring	300		ug/L ug/L		ND 4. ND 3			_No	ND	31	ND 3			<u>2.48</u> 60	
Lithium	Naturally occurring					ND 3			_No	ND	ND	ND 4			1.1	ND 52 ND 52
Magnesium	Naturally occurring	n/a				2.65 10			No			4.25 3				4.42 52
Manganese	Naturally occurring	300		ug/L		ND N			No	ND		ND 3	9 No		84	20 52
Molybdenum	Naturally occurring	n/a				ND N			No	ND		ND 4			ND	ND 52
Nickel	Allovs. coatings manufacturing, batteries	n/a		ug/L		ND 2			No	ND		1.2 4			5.6	1.8 52
Nitrate	Natural deposits, fertilizer, septic tanks	10		mg/L		1.33 9.				0.10		6.45 20			9.04	6.02 164
Nitrite	Natural deposits, fertilizer, septic tanks	1		mg/L		ND N			No	ND	ND	ND 20			ND	ND 165
Perchlorate	Fertilizers, solid fuel propellant, fireworks	18	n/a	uŭ/L		ND 1.			No	ND	4.11	1.74 6	5 No	ND		0.58 44
На	Measure of water acidity or alkalinity	n/a	n/a				.5 7.4		No	6.5	7.9	7.1 6			8.7	7.2 78
pH, field	Measure of water acidity or alkalinity	n/a	n/a		No	6.5 8	.0 7.4	385	No	7.0		7.3 71			9.0	7.4 584
Phosphate, total	Added to keep iron in solution	n/a				ND 0.			<u>No</u>	ND		ND 3			0.25	ND 52
Potassium	Naturally occurring	n/a					14 1.2			0.84		1.09 3				1.33 52
Silicon	Naturallý occurring	n/a				4.6 9			_No	3.6	8.0	5.2 4			7.3	5.1 52
Sodium	Naturallý occurring	n/a				9.8 22			<u>No</u>	7.7		12.4 3				20.7 52
Specific Conductance	Total of naturally occurring minerals	<u>n/a</u>		umho/cm		190 38				131			9 <u>No</u>			272 42
Strontium-88	Naturally occurring	<u>n/a</u>		mg/L		.052 0						0.071 4			0.147 (
Sulfate	Naturallý occuring	250	n/a	mg/L		3.3 29			<u>No</u>	ND ND		12.0 20 ND 3			17.0	<u>8.7 165</u>
Titanium	Naturally occurring	n/a				ND N			<u>No</u>	ND ND	_ <u>ND</u> 0.5		9 <u>No</u> 5 No		ND	ND 52
<u>Total Organic Carbon (TOC)</u> Turbidity		<u>n/a</u>				ND N ND 5.			<u>No</u>			ND 3				<u>ND 4</u> 0.59 42
Uranium	Silts and clays in aquifer	30	n/a			ND 5. ND N			No	ND		ND 4			<u>3.80</u> ND	0.59 42 ND 52
Vanadium	Naturally occurring					ND N			No	ND	ND		0 No			ND 52 ND 52
Zinc	Naturally occurring, plumbing	a	n/a			ND N			No	ND	ND	ND 4			0.03	ND 52
2010	puttoing boouting, pluttoing		a	IIIg/L											0.00	110 52
		-						_								

Synthetic Organic Compounds including Pesticides and Herbicides

Alachlor ESA	Degradation product of Alachlor	50	n/a	ua/L	No ND	ND	ND 21	No	ND N	ID ND	39	No	ND	ND	ND 46
Alachlor OA	Degradation product of Alachlor	50	n/a	ua/L	No ND	ND	ND 21	No	ND N	ID ND	39	No	ND	ND	ND 46
Aldicarb Sulfoxide	Pesticide used on row crops	4	1	ug/L	No ND	ND	ND 21	No	ND N	ID ND	40	No	ND	ND	ND 46
Chlordane, Total	Residue of banned termiticide	2	n/a	uğ/L	No ND	ND	ND 21	No	ND N	ID ND	42	No	ND	ND	ND 63
Diethyltoluamide (DEET)	Insect Repellent	50	n/a	uğ/L	No ND	ND	ND 18	No	ND N	ID ND	34_	No	ND	ND	ND 39
1,4-Dioxane	Used in manufacturing processes	1	n/a	uğ/L	No ND	1.08 ().25 75	No	ND 1.	17 0.41	70	No	ND	1.39	0.42 110
Metalaxyl	Used as a fungicide	50	n/a	uğ/L	No ND	ND	ND 18	No	ND N	ID ND	34_	No	ND	ND	ND 39
Metolachlor ESA	Degradation product of Metolachlor	50	n/a	uğ/L	No ND	ND	ND 21	No		ID ND	39	No	ND	ND	ND 46
Metolachlor OA	Degradation product of Metolachlor	50	n/a	uğ/L	No ND	ND	ND 21	No		ID ND	39	No	_ND	ND	ND 46
Tetrachloroterephthalic Acid	Used as a herbicide	50	n/a	uğ/L	No ND	ND	ND 25	No	ND N	ID ND	<u> 39 </u>	_No_	ND	ND	ND 47

Chlorobenzene	From industrial chemical factories	5	n/a	ug/L	No ND	ND	ND 94	No	ND	ND	ND 124	No	_ND	ND	ND 194
Chlorodifluoromethane	Used as a refrigerant	5	n/a	uğ/L	No ND	ND	ND 94	No	ND	ND	ND 124	No	ND	0.56	ND 194
Cis-1.2-Dichloroethene	From industrial chemical factories	5	n/a	uğ/L	No ND	ND	ND 94	No	ND	ND	ND 124	No	ND	1.96	ND 194
Dichlorodifluoromethane	Refrigerant, aerosol propellant	5	n/a	uğ/L	No ND	ND	ND 94	No	ND	0.28	ND 124	No	ND	1.26	ND 194
1,1-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uğ/L	No ND	1.32	0.36 94	No	ND	0.81	0.26 124	No	ND	1.11	0.29 194
1.2-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uɑ̃/L	No ND	ND	ND 94	No	ND	ND	<u>ND 124</u>	No	ND	ND	ND 194
1,1-Dichloroethene	From industrial chemical factories	5	n/a	uğ/L	No ND	0.46	ND 94	No	ND	0.41	ND 124	No	ND	0.67	ND 194
1,2-Dichloropropane	From industrial chemical factories	5	0	uğ/L	No ND	ND	ND 94	No	ND	0.25	ND 124	No	ND	ND	ND 194
Ethyl Benzene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 94	No	ND	ND	ND 124	No	ND	ND	ND 194
Isopropylbenzene	Used as a solvent	5	n/a	uq/L	No ND	ND	ND 94	No	ND	ND	ND 124	No	ND	ND	ND 194
Methylethylketone	Used in the coating industry	50	n/a	uğ/L	No ND	ND	ND 94	No	ND	6.79	ND 124	No	ND	ND	ND 194
Methyl-Tert-Butyl Ether	Gasoline	10	n/a	uă/L	No ND	ND	ND 94	No	ND	0.34	ND 124	No	ND	1.08	ND 194
o-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 94	No	ND	ND	ND 124	No	ND	ND	ND 194
p.m-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 94	No	ND	ND	ND 124	No	ND	ND	ND 194
Tetrachloroethene	Factories, dry cleaners, spills	5	0	ug/L	No ND	ND	ND 94	No	ND		ND 124	No	_ND	0.56	ND 194
Toluene	From paint on inside of water storage tank	5	n/a	uq/L	No ND	ND	ND 94	No	ND	ND	ND 124	No	ND	ND	ND 194
1,2,4-Trichlorobenzene	Discharge from textile-finishing factories	5	n/a	uğ/L	No ND	ND	ND 94	No	ND	ND	ND 124	No	ND	ND	ND 194
1,1,1-Trichloroethane	Metal degreasing sites, factories	5	n/a	uğ/L	No ND	0.55	ND 94	No	ND	0.39	ND 124	No	ND	0.53	ND 194
Trichloroethene	Metal degreasing sites, factories	5	0	uğ/L	No ND	ND	ND 94	No	ND	0.26	ND 124	No	ND	0.55	ND 194
Trichlorofluoromethane	Dry cleaning, propellant, fire extinguishers	5	n/a	uq/L	No ND	ND	ND 94	No	ND	ND	ND 124	No	ND	1.54	ND 194
	Degreasing agent, manufacturing	5	n/a	uğ/L	No ND	ND	ND 94	No	ND	0.34	ND 124	No	ND	ND	ND 194
1,1,2-Trichlorotrifluoroethane	Solvent in paints and varnishes	5	ˈn/aˈ	uğ/L	No ND	ND	ND 94	No	ND	ND	ND 124	No	ND	2.10	ND 194

Naturally Occuring Com	pounds as well as Contaminants					Distrib	ution A	rea 12	2	l	Distrib	ution A	rea 14		Distrib	ution A	ea 15
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		<u>e of Rea</u> High Value	<u>dings</u> Avg. Value	No. of Tests	Violation Yes/No		e of Read High Value	Avg. N		<u>Ran</u> lation Low Yes/NoValue	ge of Rea High e Value	<u>dings</u> Avg. No. Value Tests
Inorganics																	
	Naturally occurring	n/a	n/a	mg/L					268	No	ND	50.4	23.0 1				49.7 168
Aluminum	Naturallý occurring	n/a	n/a	mg/L				0.03	472	_No	ND	ND	ND 1		ND	0.12	0.03 199
Ammonia, free	Some fertilizers, septic systems	n/a						ND	299	No	ND	ND	ND 1			0.13	ND 178
Arsenic	Erosion of natural deposits	10		uğ/L				ND	472	_No	ND	ND	ND 1		ND	1.7	ND 199
Barium	Erosion of natural deposits	2		mg/L	No I	ND 0	.09	ND	472	_No		0.02	ND 1		ND		0.02 199
Boron	Naturally occurring	n/a		mg/L			ND	ND	494	_No	ND	ND	ND 1		_ <u>_ND</u>	ND	ND 236
Bromide	Naturallý occurring	_ n/a	n/a	uğ/L				ND	285	No	ND	ND	ND 1		ND	93.7	ND 185
Calcium	Naturally occurring, pH control	∣ n/a	n/a	mg/L				21.6	494	_No	2.6	18.0	8.1 1		3.3	54.4	22.6 236
Chloride	Naturally occurring, salt water intrusion, road sal	t 250						41.6	508	No			10.1 1		4.2		38.9 533
Chromium, total	Natural deposits	100	100	uğ/L				0.6	472	_No	ND	0.9	ND 1		ND	3.6	1.0 199
CO2, calculated	Naturally occurring	_ n/a	n/a					8.2	268	<u>No</u>	3.0	20.3	8.2 1		0.9	39.1	9.7 168
Cobalt-59	Naturally occurring	<u> n/a</u>	n/a	uğ/L			3.0	ND	472	No	ND	ND	ND 1		ND	0.9	ND 199
Color, Apparent	Naturallý occurring metals or minerals	15				ND	15	ND	267	<u>No</u>	ND		ND 1		ND	7	ND 167
Copper	Household plumbing, leaching of wood preservatives	AL=1		mg/L				ND	472	<u>No</u>	ND		0.02 1		ND	0.05	ND 199
Fluoride	Erosion of natural deposits	2.2	n/a	mg/L				ND	508	No	ND	ND	ND 1		ND	ND	ND 533
Hardness, total	Measure of the calcium and magnesium	n/a						71.6	494	<u>No</u>	9.8		25.9 1		11.1		77.4 236
Hexavalent Chromium	Erosion of natural deposits	100						0.53	263	<u>No</u>	0.11		0.41 1		ND		0.80 156
Iron	Naturally occurring	300		uğ/L			345	101	494	No	ND		ND 1			1,042	71 236
Lithium	Naturally occurring	∣n/a	n/a	uğ/L				ND	472	<u>No</u>	ND		ND 1		_ <u>_ND</u>	3.6	ND 199
Magnesium	Naturally occurring	n/a		mğ/L				4.31	494	<u>No</u>	0.67		1.39 1 ND 1		0.69		5.10 236
Manganese	Naturally occurring	300		uğ/L			161	19	494	No	ND ND				_ <u>_ND</u>	68	15 236
Molybdenum	Naturally occurring	n/a						ND	472	No	ND		<u>ND 1</u> ND 1		_ <u>_ND</u>	ND	ND 199
Nickel	Alloys, coatings manufacturing, batteries						6.8	0.7	472	<u>No</u>	0.03		1.39 1		<u>ND</u>	2.9	0.5 199
Nitrate	Natural deposits, fertilizer, septic tanks	10		mg/L				4.54	506	No	ND		ND 1		0.06		4.89 532
Nitrite Perchlorate	Natural deposits, fertilizer, septic tanks Fertilizers, solid fuel propellant, fireworks	18		mg/L				ND 0.42	506 266	No	ND		0.36 1		_ <u>ND</u> ND	ND 3.88	ND 532
	Measure of water propertant, illeworks	n/a	n/a					<u>0.42</u> 7.3	429	No	6.5	7.5	7.0 2				0.87 196 7.1 226
pH pH, field	Measure of water acidity or alkalinity Measure of water acidity or alkalinity	n/a	n/a	pH Units				7.4 2		No	7.0		7.3 28		_ <u>6.5</u> _ 5.6		7.4 2.136
Phosphate, total	Added to keep iron in solution	n/a	n/a					<u>7.4</u> 20.51	494	No	ND		ND 1		<u></u> ND		0.52 236
Potassium	Naturally occurring	n/a	n/a					1 14	494	No	0.33		0.49 1		0.32		1.32 236
Silicon	Naturally occurring	n/a	n/a					6.6	494	No	4.2	6.9	5.2 1		<u>4.6</u>	10.8	7.3 199
Sodium	Naturally occurring	n/a	n/a	mg/L				17.0	494	No	3.7		5.9 1				21.3 236
Specific Conductance	Total of naturally occurring minerals	n/a		umho/cm				252	268	No	44	208	88 1		<u></u>		245 168
Strontium-88	Naturally occurring	n/a	n/a	mg/L				0.055		No			0.015 1		40 ND		0.067 199
Sulfate	Naturally occuring	250	n/a	ma/L				14.0	508	No			3.3 1				12.0 533
Titanium	Naturally occurring	n/a	n/a					ND	494	No	ND		ND 1			5.1	ND 236
Total Organic Carbon (TOC)		n/a	n/a				0.8	ND	37	No	ND	0.5		5 No		0.6	ND 18
Turbidity	Silts and clays in aguifer	5	n/a					0.48	268	No	ND		ND 1				0.45 168
Uranium	Naturally occurring	30	n/a					ND	472	No	ND		ND 1				ND 199
Vanadium	Naturally occurring	n/a	n/a	uq/L			5.4	ND	472	No	ND	ND	ND 1			6.8	ND 199
Zinc	Naturally occurring, plumbing	5					0. 4).04	ND	472	No	ND	ND	ND 1		ND	0.05	ND 199
	,,															2100	

Synthetic Organic Compounds including Pesticides and Herbicides

	Desmadation much of Alashlan	50	10/0						Nie	ND			6	No	ND		
	Degradation product of Alachlor	50	n/a	ug/L	No	ND	ND	ND 269	No					-	ND	ND	<u>ND 181</u>
Alachlor OA	Degradation product of Alachlor	50	n/a	ug/L	No	_ ND	ND	ND 269	No	ND	ND	ND '	6	No	ND	ND	ND 181
Aldicarb Sulfoxide	Pesticide used on row crops	4	1	uq/L	No	ND	ND	ND 268	No	ND	ND	ND '	6	No	ND	ND	ND 174
Chlordane, Total	Residue of banned termiticide	2	n/a	uğ/L	No	ND	ND	ND 277	No	ND	ND	ND ·	8	No	ND	0.20	ND 172
Diethvltoluamide (DEET)	Insect Repellent	50	n/a	uɑ̃/L	No	ND (0.34	ND 238	No	ND	ND	ND ·	4	No	ND	ND	ND 151
1.4-Dioxane	Used in manufacturing processes	1	n/a	uq/L	No	ND '	1.44	0.16 427	No	ND	0.31	0.11 ·	9	No	ND	0.94	0.21 258
Metalaxyl	Used as a fungicide	50	n/a	uğ/L	No	ND	ND	ND 238	No	ND	ND	ND ·	4	No	ND	ND	ND 151
Metolachlor ESA	Degradation product of Metolachlor	50	n/a	ua/L	No	ND	ND	ND 269	No	ND	ND	ND ·	6	No	ND	ND	ND 181
	Degradation product of Metolachlor	50	n/a	uğ/L	No	ND	ND	ND 269	No	ND	ND	ND ·	6	No	ND	ND	ND 181
Tetrachloroterephthalic Acid	Used as a herbicide	50	n/a	uğ/L	No	ND [·]	1.28	ND 283	No	ND	ND	ND [·]	6	No	ND	1.67	ND 181

						-									
Chlorobenzene	From industrial chemical factories	5	n/a	ug/L	No ND	0.23	ND 575	No	ND	ND	ND 25	i No	ND	0.36	ND 344
Chlorodifluoromethane	Used as a refrigerant	5	n/a	uğ/L	No ND	1.76	ND 575	No	ND	ND	ND 25	i No	ND	0.27	ND 344
Cis-1.2-Dichloroethene	From industrial chemical factories	5	n/a	uğ/L	No ND	0.34	ND 575	No	ND	ND	ND 25	No	ND	0.84	ND 344
Dichlorodifluoromethane	Refrigerant, aerosol propellant	5	n/a	uğ/L	No ND	3.53	ND 575	No	ND	ND	ND 25	No	ND	ND	ND 344
1,1-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uğ/L	No ND	1.12	ND 575	No	ND	0.31	ND 25		ND	1.68	ND 344
1,2-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uğ/L	No ND	ND	ND 575	No	ND	ND	ND 25	NoNo	ND	ND	ND 344
1.1-Dichloroethene	From industrial chemical factories	5	n/a	uğ/L	No ND	1.23	ND 575	No	ND	ND	ND 25	No	ND	0.82	ND 344
1.2-Dichloropropane	From industrial chemical factories	5	0	uğ/L	No ND	ND	ND 575	No	ND	ND	ND 25	No	ND	0.34	ND 344
Ethyl Benzene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	0.16	ND 575	No	ND		ND 25		ND	ND	ND 344
Isopropylbenzene	Used as a solvent	5_	n/a	uq/L	No ND	ND	ND 575	No	ND	ND	ND 25		ND	0.67	ND 344
Methylethylketone	Used in the coating industry	50	n/a	uğ/L	No ND	7.56	ND 575	No	ND	ND	ND 25	i No	ND	ND	ND 344
Methyl-Tert-Butyl Ether	Gasoline	10	n/a	uğ/L	No ND	1.53	ND 575	No	ND	ND	ND 25		ND	0.96	ND 344
o-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	0.83	ND 575	No	ND	ND	ND 25		_ND	0.34	ND 344
p.m-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	0.50	ND 575	No	ND	ND	ND 25	i No	ND	ND	ND 344
Tetrachloroethene	Factories, dry cleaners, spills	5	0	uğ/L	No ND	1.74	ND 575	No	ND		ND 25		ND	0.66	ND 344
Toluene	From paint on inside of water storage tank	5	n/a	uq/L	No ND	0.20	ND 575	No	ND	ND	ND 25		_ND_	ND	ND 344
1,2,4-Trichlorobenzene	Discharge from textile-finishing factories	5	n/a	uğ/L	No ND	ND	ND 575	No	ND	ND	ND 25	i No	ND	ND	ND 344
1,1,1-Trichloroethane	Metal degreasing sites, factories	5	n/a	uğ/L	No ND	0.70	ND 575	No	ND		ND 25		ND	0.73	ND 344
Trichloroethene	Metal degreasing sites, factories	5	0	uğ/L	No ND	0.94	ND 575	No	ND	ND	ND 25		_ND_	0.51	ND 344
Trichlorofluoromethane	Dry cleaning, propellant, fire extinguishers	5	n/a	uğ/L	No ND	ND	ND 575	No	ND	ND	ND 25	i No	ND	2.28	ND 344
1,2,3-Trichloropropane	Degreasing agent, manufacturing	5	n/a	uğ/L	No ND	ND	ND 575	No	ND		ND 25		ND	0.51	ND 344
1,1,2-Trichlorotrifluoroethane	Solvent in paints and varnishes	5	<u>' n/a '</u>	uğ/L	No ND	ND	ND 575	No	ND	ND	ND 25	NoNo	ND	0.71	ND 344

Naturally Occuring Com	pounds as well as Contaminants					Distrib	ution Are	a 23		Distrib	ution A	rea 26	;	Distrib	ution Ar	ea 30
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violatio Yes/No	n Low	<u>e of Readin</u> High A Value Va	vg. No.	-	on Low	<u>e of Rea</u> High Value	Avg.	No. of Tests	<u>Ran</u> Violation Low of Yes/NoValue	•	lings Avg. No. Value Tests
Inorganics																
Alkalinity to pH 4.5 mgCaCO3/L	Naturally occurring	n/a	n/a	mg/L	No	24.6	98.8 48.	2 133	No	29.5 ⁻	131.6	59.7	28	No 21.4	147.8 6	9.6 106
Aluminum	Naturally occurring	n/a		mg/L	No	ND ().17 0.0					0.03	28	No ND	0.18 (0.05 139
Ammonia, free	Some fertilizers, septic systems	n/a		mg/L	No).06 NE			ND			28	No ND		ND 143
Arsenic	Erosion of natural deposits	10		uğ/L	No		ND NE		<u>No</u>	ND	ND		28	No ND		ND 139
Barium	Erosion of natural deposits	2		mğ/L	No		.09 0.0		No.				28	No ND		0.03 139
Boron	Naturally occurring	n/a		mg/L	No		ND NE			ND			131	No ND		ND 175
Bromide	Naturally occurring	n/a	n/a	uğ/L	No		77.5 NE						32	No ND		33.9 124
Calcium	Naturallý occurring, pH control	n/a	n/a	mg/L	No		55.9 24.					22.3 1		No 8.2		32.5 175
Chloride	Naturally occurring, salt water intrusion, road salt	250			No		75.7 37.			26.1			31	No 15.5		53.9 546
Chromium, total	Natural deposits	100	100	uğ/L	No		1.3 NE			_ND_		ND	28	No ND		0.5 139
CO2, calculated	Naturally occurring	∣n/a		mğ/L	No		4.3 6.4			0.9			28	<u>No 0.8</u>		9.5 106
Cobalt-59	Naturally occurring	<u> n/a</u>		uğ/L	No		4.5 NE			_ND_	0.9	ND	28	No ND		ND 139
Color, Apparent	Naturally occurring metals or minerals	15		Color Units	No		7 NI			ND	7 ND		<u>28</u> 28	No ND		ND 104
Copper	Household plumbing, leaching of wood preservatives	AL=1.		mg/L	No		.08 NI			_ND_				No ND		ND 139
Fluoride	Erosion of natural deposits	2.2		mg/L	No		ND NI			ND 40.4		ND 83.0 1	31	No ND		ND 546
Hardness, total	Measure of the calcium and magnesium	n/a		mg/L	_No_	25.6 1				<u>40.4</u> ND				No 33.2		11.5 175
Hexavalent Chromium	Erosion of natural deposits	100			<u>No</u>		.47 0.3			ND ND		0.19 116 1	<u>28</u> 131	No ND		<u>).33 98</u>
Lithium	Naturally occurring			uğ/L	Yes		309 13			ND ND	2.3		28	No ND	143	<u>36 175</u>
Magnesium	Naturally occurring	n/a		ug/L	No	ND 1.50 8	5.4 1.2				10.18			<u>No ND</u> No 2.99		ND 139
Manganese	Naturallý occurring Naturally occurring	300		mğ/L ua/L	No No		<u>3.99 4.8</u> 171 30			<u></u> ND	122		131	No ND	<u>19.65</u> 201	7.38 175 32 175
Molybdenum	Naturally occurring	n/a		ug/L ug/L	No		ND NE			ND			28			ND 139
Nickel	Alloys, coatings manufacturing, batteries	n/a		ug/L	No		3.1 0.6			ND			28	No ND		0.5 139
Nitrate	Natural deposits, fertilizer, septic tanks	10		ma/L	No		34 3.7			0.28		2 05	31	No 0.02		4.84 544
Nitrite	Natural deposits, fertilizer, septic tanks	1	1	mg/L	No		. <u>017</u> NE			 ND		ND	31	<u>No</u> ND		ND 544
Perchlorate	Fertilizers, solid fuel propellant, fireworks	18		ua/L	No		1.14 NE					ND	28	No ND		1.36 162
pH	Measure of water acidity or alkalinity	n/a	n/a	pH Units	No		8.7 7.3			6.8	8.0		40	No 6.5		7.3 197
pH. field	Measure of water acidity or alkalinity	n/a	n/a	pH Units	No		B.5 7.4			7.0			267	No 6.0		7.5 906
Phosphate, total	Added to keep iron in solution	n/a		ma/L	No		.89 0.5			ND		1.23 1	131	No ND		0.46 175
Potassium	Naturally occurring	n/a	n/a	mg/L	No		3.86 1.4			1.00	2.31	1.68 1	131	No 0.63		2.48 175
Silicon	Naturally occurring	n/a	n/a	ma/L	No		0.4 7.6			7.4	11.0	9.2	28	No 4.1		6.5 139
Sodium	Naturally occurring	n/a	n/a	mg/L	No		39.3 18.			15.7		27.2 1	131	No 9.1		37.2 175
Specific Conductance	Total of naturally occurring minerals	n/a		umho/cm	No		189 23			185		313	28	No 155	1.021	407 106
Strontium-88	Naturally occurring	n/a	n/a	ma/L	No	0.021	0.133 0.0	71 141	No		0.127 (No 0.046	0.235 0).111 139
Sulfate	Naturally occuring	250	n/a	mg/L	No	3.8 6	1.8 21.	1 250		8.6	25.0		31	No 6.6		34.4 546
Titanium	Naturallý occurring	n/a		ug/L	No		ND NI		No.	ND			131 _	No ND		ND 175
Total Organic Carbon (TOC)		n/a		mg/L	No		0.7 0.			0.5	0.7	0.6	6	No 0.6		0.7 10
Turbidity	Silts and clays in aquifer	5		NTU .	No		3.88 0.4			ND		1.08	28	No ND		0.45 106
Uranium	Naturally occurring	30	n/a	ug/L	No		ND ND			ND		ND	28	No ND		ND 139
Vanadium	Naturally occurring	<u>n/a</u>	n/a	ug/L	No		5.7 NC			ND		ND	28	No ND		ND 139
Zinc	Naturally occurring, plumbing	5	n/a	mg/L	No	ND 0	.03 NC	141	<u>No</u>	ND	0.05	ND	28	NoND	ND	ND 139
													_			

Synthetic Organic Compounds including Pesticides and Herbicides

		50	,									ND	ND	00			4.00	ND 400
	Degradation product of Alachlor	50	n/a	ug/L	No	ND N		ND	146	No	ND	ND	ND	28	_No_	ND	1.36	ND 136
Alachlor OA	Degradation product of Alachlor	50	n/a	uğ/L	No	_ND 0	.80	ND	146	No	ND		ND	_28	No	ND	1.04	ND 136
Aldicarb Sulfoxide	Pesticide used on row crops	4	1	ug/L	No	ND N	ND	ND	131	No	ND	ND	ND	28	No	ND	0.54	ND 190
Chlordane, Total	Residue of banned termiticide	2	n/a	uğ/L	No	ND N	ND	ND	131	No	ND	ND	ND	28	No	ND	ND	ND 118
Diethyltoluamide (DEET)	Insect Repellent	50	n/a	uğ/L	No	ND 0	.48	ND	119	No	ND	0.33	ND	26	No	ND	0.29	ND 123
1,4-Dioxane	Used in manufacturing processes	1	n/a	ug/L	No	ND 0	.23	ND	153	No	ND	0.60		_44	No	ND	0.18	ND 139
	Used as a fungicide	50	n/a	uğ/L	No	ND N	ND	ND	119	No	ND	ND	ND	26	No	ND	0.40	ND 123
Metolachlor ESA	Degradation product of Metolachlor	50	n/a	uğ/L	No	ND 2	.47	ND	146	No	ND	ND	ND	28	No	ND	2.51	ND 136
Metolachlor OA	Degradation product of Metolachlor	50	n/a	uă/L	No	ND 0	.87	ND	146	No	ND	ND	ND	28	No	ND	2.77	ND 136
Tetrachloroterephthalic Acid	Used as a herbicide	50	n/a	uğ/L	No	ND 1	.07	ND	136	No	ND	ND	ND	28	No	ND	9.14	1.39 173

											_				
Chlorobenzene	From industrial chemical factories	5	n/a	ug/L	No ND	ND	ND 242	No	ND (0.14 NE) 59	No	_ND	ND	ND 198
Chlorodifluoromethane	Used as a refrigerant	5	n/a	uğ/L		2.42	ND 242	No	ND (0.47 NI	D <u>59</u>	No	ND	ND	ND 198
Cis-1,2-Dichloroethene	From industrial chemical factories	5	n/a	uğ/L	No ND	ND	ND 242	No	ND	ND NE) 59	No	ND	ND	ND 198
Dichlorodifluoromethane	Refrigerant, aerosol propellant	5	n/a	uğ/L	No ND	ND	ND 242	No		0.29 NE) <u>59</u>	No	_ND	ND	ND 198
1,1-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	_uğ/L	No ND	ND	ND 242	No	ND	ND NE) 59	No	ND	ND	ND 198
1,2-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uğ/L	No ND	ND	ND 242	No	ND	ND NE) 59	No	ND	ND	ND 198
1,1-Dichloroethene	From industrial chemical factories	5	n/a	uğ/L	No ND	ND	ND 242	No		ND NE		No	_ND	ND	ND 198
1.2-Dichloropropane	From industrial chemical factories	5	0	uq/L	No ND	ND	ND 242	No	ND	ND NE) 59	No	ND	0.34	ND 198
Ethyl Benzene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	1.89	ND 242	No		0.17 NE) 59	No	ND	ND	ND 198
Isopropylbenzene	Used as a solvent	5	n/a	uğ/L	No ND	0.28	ND 242	No		ND NE) <u>59</u>	No	_ND	ND	ND 198
Methylethylketone	Used in the coating industry	50	n/a	uq/L	No ND	ND	ND 242	No		ND NE) 59	No	_ND	ND	ND 198
Methyl-Tert-Butyl Ether	Gasoline	10	n/a	uğ/L	No ND	0.41	ND 242	No		0.36 NE) <u>59</u>	No	ND	0.27	ND 198
o-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L		ND	ND 242	No		ND NE		No	_ND	ND	ND 198
p,m-Xylene	From paint on inside of water storage tank	5	n/a	_ug/L	No ND	ND	ND 242	No	ND	ND NE		No	_ND	ND	ND 198
Tetrachloroethene	Factories, dry cleaners, spills	5	0	ug/L	No ND	ND	ND 242	No		1.04 NE) <u>59</u>	No	ND	ND	ND 198
Toluene	From paint on inside of water storage tank	5	n/a	ug/L	No ND	0.56	ND 242	No		ND NE) 59	No	_ND	ND	ND 198
	Discharge from textile-finishing factories	5	n/a	uğ/L	No ND	ND	ND 242	No	ND	ND NE) 59	No	_ND	ND	ND 198
	Metal degreasing sites, factories	5	n/a	uğ/L	No ND	ND	ND 242	No		ND NE		No	_ND	ND	ND 198
Trichloroethene	Metal degreasing sites, factories	5	0	uğ/L	No ND	ND	ND 242	No		ND NE) 59	No	_ND	ND	ND 198
	Dry cleaning, propellant, fire extinguishers	5	n/a	_uğ/L	No ND	ND	ND 242	No		ND NE		No	_ND	ND	ND 198
	Degreasing agent, manufacturing	5	n/a	uğ/L	No ND	0.44	ND 242	No		ND NE		No	ND	ND	ND 198
1,1,2-Trichlorotrifluoroethane	Solvent in paints and varnishes	5	' n/a '	uğ/L	No ND	ND	ND 242	No	ND	ND NE) 59	No	_ND	ND	ND 198

Naturally Occuring Con	pounds as well as Contaminants				Di	stribut	tion Are	a 32		Distrib	ution A	rea 34	ļ	Distrib	ution Ar	ea 35
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure		<u>Range</u> Low Value	of Readin High A Value V	Avg. No. of	Violation Yes/No		<u>e of Reac</u> High Value	Avg.	No. of Tests		ge of Read High Value	<u>dings</u> Avg. No. Value Tests
Inorganics																
Alkalinity to pH 4.5 mgCaCO3/L		n/a		mg/L	No 28			3.2 6	_No	35.2		41.3	_7		117.0	82.6 8
Aluminum	Naturally occurring	∣ n/a		mğ/L	<u>No N</u>			05 6	_No	ND	0.03	ND		No ND	ND	ND 8
Ammonia, free	Some fértilizers, septic systems	n/a			<u>No</u> NI		ID N		_No	ND	ND	ND		No ND	ND	ND 8
Arsenic	Erosion of natural deposits	10		uğ/L	<u>No N</u>		ID N		_No	ND	ND	ND		No ND	ND	ND 8
Barium	Erosion of natural deposits	2		mğ/L	No NI		.02 N		<u>No</u>	ND	ND	ND	<u></u>	No ND		ND 8
Boron	Naturally occurring	∣n/a		mg/L	<u>No</u> NI			D 6	_No	ND	ND	ND	<u></u>	No ND	ND	ND 8
Bromide	Naturally occurring	∣n/a		ug/L	No NI		ID N		_No	ND	51.5	ND		No ND		72.4 8
Calcium	Naturally occurring, pH control	n/a		mğ/L	No 9.		2.3 16		<u>No</u>	11.5		14.2	7	No 23.4		26.8 8
Chloride	Naturally occurring, salt water intrusion, road salt				<u>No 17</u>				_No	13.0		14.2	7	No ND		8.3 19
Chromium, total	Natural deposits	100		uğ/L	No 0.				_No	ND	0.6	ND	7	No ND	ND	ND 8
CO2, calculated	Naturally occurring	∣n/a		mğ/L	No 3.				<u>No</u>	_ <u>1.9</u>	8.2 ND	4.9	7	No 7.2		<u>16.0 8</u>
Cobalt-59	Naturally occurring	<u> n/a</u>		uğ/L	No NI				_No	ND ND		ND	<u> </u>	No ND		ND 8
Color, Apparent	Naturally occurring metals or minerals	15			No NI				No		5 0.03	ND		No ND		ND 8
Copper	Household plumbing, leaching of wood preservatives	AL=1		mg/L	No NI				<u>No</u>	ND ND	<u>0.03</u> ND	ND	7	No ND		0.07 8
Fluoride	Erosion of natural deposits	2.2		mg/L	No NI				<u>No</u>	40.9		ND 49.7	<u>-</u> /	No ND	ND	ND 19
Hardness, total	Measure of the calcium and magnesium	<u>n/a</u>			<u>No 30</u>		5.9 51		No	0.25		0.36	<u> </u>	<u>No 86.9</u> No ND		110.2 8
Hexavalent Chromium	Erosion of natural deposits	300			<u>No 0.2</u>		.99 0.7		<u>No</u>	0.25 ND	<u>0.55</u> 67	0.30 ND	7 -			ND 8
lron Lithium	Naturally occurring	00			No NI		7 <u>1 4</u> 8 JD NI			ND	ND	ND	7 -	No ND	ND ND	ND 8
Magnesium	Naturally occurring	n/a		uğ/L mg/L	<u>No</u> NI No 1.6				No	2.63		3.46	7 -	<u>No</u> 6.91		ND 8
Manganese	Naturally occurring	300		ug/L			02 2.2 ID NI		No	ND	<u></u>	ND	7	<u>No ND</u>		ND 8
Molybdenum	Naturally occurring			ug/L	No NI		ID NI		No	ND	ND	ND	7			ND 8
Nickel	Alloys, coatings manufacturing, batteries	n/a			No NI		ID NI		No	ND	ND	ND	7 -		ND ND	ND 8
Nitrate	Natural deposits, fertilizer, septic tanks	10		mg/L	No 0.3		.73 0.6		No	0.48	2.05	0.83	7 -			1.96 19
Nitrite	Natural deposits, fertilizer, septic tanks		1	ma/L	No NI		13 0.0		No	ND	ND	ND	7 -			0.012 19
Perchlorate	Fertilizers, solid fuel propellant, fireworks	18			No NI		.35 N		No	ND	ND	ND	7	No ND		0.77 11
H	Measure of water acidity or alkalinity	n/a			No 6.		. <u></u>		No	7.0	77	7.3	8	No 6.7	8.7	7.2 18
pH. field	Measure of water acidity or alkalinity	n/a		pH Units	No 7.		. 4 7.		No	7.0	7.9	7.3 1		No 7.0	8.0	7.4 98
Phosphate, total	Added to keep iron in solution	n/a			No NI		ND N		No	ND	0.29	ND	7	No ND	ND	ND 8
Potassium	Naturally occurring	n/a			No 0.5		.80 0.6		No	0.67		0.82	7	No 1.25		1.46 8
Silicon	Naturally occurring	n/a		ma/L	No 3.		6 4.		No	5.8	8.7	6.6	7	No 8.0	8.6	8.3 8
Sodium	Naturally occurring	n/a		mg/L	No 12		9.0 29		No	8.5	11.4	9.5	7	No 30.4		38.2 8
Specific Conductance	Total of naturally occurring minerals	n/a		umho/cm	No 19		47 29		No	131		158	7	No 327		429 8
Strontium-88	Naturally occurring	n/a		ma/L		38 0.0					0.065		7	No 0.080).118 8
Sulfate	Naturally occuring	250		ma/L	No 5.		.4 6.		No	8.0		11.6	7	No ND	61.9	9.1 19
Titanium	Naturally occurring	n/a		ug/L	No NI				No	ND	ND	ND	7	No ND		ND 8
Total Organic Carbon (TOC		n/a		ma/L	No NI				No	0.5	0.7	0.6	3	No ND	0.5	ND 2
Turbidity	Silts and clays in aquifer	5	n/a	NŤU	No NI	D 1.9	96 0.6	6 6	No	ND	0.66	ND		No ND	ND	ND 8
Uranium	Naturally occurring	30	n/a		No NI				No	ND		ND	7	No ND		ND 8
Vanadium	Naturally occurring	n/a	n/a	ug/L	No NI	D N	D NE) 6	No	ND	2.3	ND	7	No ND	ND	ND 8
Zinc	Naturallý occurring, plumbing	5	n/a	mg/L	No NI	D N	D NE	D 6	_No	ND	ND	ND	7_	No ND	0.02	ND 8
				Ŭ												

Synthetic Organic Compounds including Pesticides and Herbicides

Alachlor ESA	Degradation product of Alachlor	50	n/a	ug/L	No ND	ND	ND	6	No	ND	ND	ND	_7	No	ND	ND	ND 12
Alachlor OA	Degradation product of Alachlor	50	n/a	uğ/L	No ND	ND	ND	6	No	ND		ND	7	No	ND	ND	ND 12
Aldicarb Sulfoxide	Pesticide used on row crops	4	1	uğ/L	No ND	ND	ND	6	No	ND		ND	_7	No	ND	ND	ND 8
Chlordane, Total	Residue of banned termiticide	2	n/a	uğ/L	No ND	ND	ND	6	No	ND	ND	ND	7	No	ND	ND	ND 8
Diethyltoluamide (DEET)	Insect Repellent	50	n/a	uğ/L	No ND	ND	ND	5	No	ND		ND	_7	No	ND	ND	ND 14
1,4-Dioxane	Used in manufacturing processes	1	n/a	uğ/L	No ND	ND	ND	6	No	ND		ND	_7	No	ND	0.08	ND 9
Metalaxyl	Used as a fungicide	50	n/a	uğ/L	No ND	ND	ND	5	No	ND	ND	ND	7	No	ND	ND	ND 14
Metolachlor ESA	Degradation product of Metolachlor	50	n/a	uğ/L	No ND	ND	ND	6	No	ND	ND	ND	7	No	ND	ND	ND 12
Metolachlor OA	Degradation product of Metolachlor	50	n/a	uğ/L	No ND	ND	ND	6	No	ND		ND	7	No	ND	ND	ND 12
Tetrachloroterephthalic Acid	Used as a herbicide	50	n/a	uğ/L	No ND	ND	ND	6	No	ND	ND	ND	_7	No	ND	1.67	ND 29

													_			
Chlorobenzene	From industrial chemical factories	5	n/a	ug/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
Chlorodifluoromethane	Used as a refrigerant	5	n/a	uğ/L		D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
Cis-1,2-Dichloroethene	From industrial chemical factories	5	n/a	uğ/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
Dichlorodifluoromethane	Refrigerant, aerosol propellant	5	n/a	uğ/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	_ND	ND	ND 29
1,1-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uq/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
1.2-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uğ/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
1,1-Dichloroethene	From industrial chemical factories	5	n/a	ug/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	_ND	ND	ND 29
1,2-Dichloropropane	From industrial chemical factories	5	0	ug/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
Ethyl Benzene	From paint on inside of water storage tank	5	n/a	uğ/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
Isopropylbenzene	Used as a solvent	5	n/a	uğ/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	_ND	ND	ND 29
Methylethylketone	Used in the coating industry	50	n/a	uğ/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
	Gasoline	10	n/a	uğ/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
o-Xylene	From paint on inside of water storage tank	5	n/a	ug/L	No N	D ND	ND 10	_No	ND	ND	ND	11	No	_ND	ND	ND 29
p,m-Xylene	From paint on inside of water storage tank	5	n/a	uq/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	_ND	ND	ND 29
Tetrachloroethene	Factories, dry cleaners, spills	5	0	uğ/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
Toluene	From paint on inside of water storage tank	5	n/a	uğ/L	No N	D ND	ND 10	_No	ND	ND	ND	11	No	_ND	ND	ND 29
	Discharge from textile-finishing factories	5	n/a	uğ/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
1,1,1-Trichloroethane	Metal degreasing sites, factories	5	n/a	uğ/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
	Metal degreasing sites, factories	5	0	uğ/L		D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
Trichlorofluoromethane	Dry cleaning, propellant, fire extinguishers	5	n/a	uğ/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
	Degreasing agent, manufacturing	5	n/a	uğ/L	No N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29
1,1,2-Trichlorotrifluoroethane	Solvent in paints and varnishes	5	' n/a '	uğ/L	_No_N	D ND	ND 10	No	ND	ND	ND	11	No	ND	ND	ND 29

Naturally Occuring Com	pounds as well as Contaminants				l	Distrib	ution A	Area 44	4	I	Distrib	ution A	rea 53	i.	Distri	bution A	rea 54
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violatior Yes/No		<u>le of Rea</u> High Value	i <u>dings</u> Avg. Value	No. of Tests	Violation Yes/No		<u>e of Read</u> High Value	Avg.	No. of Tests	Ra Violation Lo of Yes/NoVa		
Inorganics																	
Alkalinity to pH 4.5 mgCaCO3/L	Naturally occurring	n/a	n/a	mg/L			49.6	44.8	6					14	No 22.0		33.5 25
Aluminum	Naturallý occurring	n/a	n/a	mg/L	No	ND	0.02	ND	6					23	No 0.07	0.77	0.34 36
Ammonia, free	Some fertilizers, septic systems	n/a	n/a	mg/L		ND	ND	ND	6	_No	ND	ND		14	No ND	ND	ND 30
Arsenic	Erosion of natural deposits	10	0	uğ/L		ND	ND	ND	6	<u>No</u>	ND	ND		23	No ND	ND	ND 36
Barium	Erosion of natural deposits	2	2	mğ/L			ND	ND	6	_No	ND	ND		23	No ND	ND	ND 36
Boron	Naturally occurring	n/a	n/a	mg/L		ND	ND	ND	6	_No	ND	ND		62	No ND	0.13	ND 70
Bromide	Naturally occurring	n/a	n/a	uğ/L			55.0	ND	6	_No	ND	ND		22 _	No ND	ND	ND 38
Calcium	Naturallý occurring, pH control	<u> n/a</u>	n/a	mg/L			31.3	17.9	6	<u>No</u>	ND	0.9		62	No ND	1.6	ND 70
Chloride	Naturally occurring salt water intrusion, road salt	250	n/a				23.1	19.0	6	<u>No</u>	4.4	6.6		14	No 3.5	5.9	4.8 24
Chromium, total	Natural deposits	10,0	100	uğ/L		ND	0.5	ND	6	No	ND	1.0		23	No ND	1.0	ND 36
CO2, calculated	Naturally occurring	n/a	n/a	mğ/L		1.6	7.2	3.8	6	<u>No</u>	1.7	13.2		14	No 1.2	14.0	5.3 25
Cobalt-59	Naturallý occurring	n/a	n/a	uğ/L			ND	ND	6	<u>No</u>	ND	ND		23	No ND	ND	ND 36
Color, Apparent	Naturally occurring metals or minerals	15	n/a	Color Units		ND	5	ND	6	Yes	ND ND	<u>15</u> 0.06		<u>14</u> 23	Yes ND	15	8 25
Copper	Household plumbing, leaching of wood preservatives	AL=1.		mg/L			ND	ND	6	<u>No</u>					No ND	ND	ND 36
Fluoride	Erosion of natural deposits	2.2	n/a	mg/L		ND	ND	ND	6	<u>No</u>	ND ND	ND 3.9		14 62	No ND	0.2	ND 24
Hardness, total	Measure of the calcium and magnesium	<u>n/a</u> 100	n/a	mg/L				61.9	6	<u>No</u>				14		5.1	ND 70
Hexavalent Chromium	Erosion of natural deposits	300						0.48	6	Yes	120	800				0.56	ND 24
<u>Iron</u> Lithium	Naturally occurring	n/a	n/a	ug/L ug/L			2 <u>39</u> 21	<u>55</u> ND	<u>6</u> 6	_No	4.2	9.7		23	<u>Yes 92</u> No 2.6	733	<u>265 70</u> 4.1 36
Magnesium	Naturally occurring	n/a	n/a	ma/L		ND 3.38		4.17	6	No		0.39	ND	62	No ND	<u>6.4</u> 0.78	4.1 36 ND 70
Manganese	Naturally occurring	300	n/a	ug/L		3.30 ND	7.45 38	<u>4.17</u> 11	6	_No	ND	12		62	No ND	0.76 ND	ND 70
Molybdenum	Naturally occurring	n/a		ug/L		ND	ND	ND	6	No	ND	ND		23	No ND	ND ND	ND 70
Nickel	Alloys, coatings manufacturing, batteries	n/a		ug/L		ND	ND	ND	6	No	ND	0.8		23	No ND	3.6	ND 36
Nitrate	Natural deposits, fertilizer, septic tanks	10		ma/L				0.91	6	No		0.01		14	No ND	0.02	ND 24
Nitrite	Natural deposits, fertilizer, septic tanks		1	ma/L		ND	ND	ND	6	No	ND	ND		14	No ND	 ND	ND 24
Perchlorate	Fertilizers, solid fuel propellant, fireworks	18	n/a	ug/L			ND	ND	6	No	ND	ND		14	No ND	ND	ND 24
H	Measure of water acidity or alkalinity	n/a	n/a	pH Units			7.8	7.4	6	No	6.6	7.5		16	No 6.6	7.8	7.2 25
pH. field	Measure of water acidity or alkalinity	n/a	n/a	pH Units			8.0	7.4	62	No	6.3	8.0		88	No 7.0	8.9	7.4 157
Phosphate, total	Added to keep iron in solution	n/a	n/a	ma/L				0.21	6	No	ND	3.81	1.14	62	No ND		0.37 70
Potassium	Naturally occurring	n/a	n/a	mg/L				0.85	6	No			2.81	62	No 0.97		1.75 70
Silicon	Naturally occurring	n/a	n/a	ma/L			10.0	7.3	6	No	4.0	5.7		23	No 4.5	6.0	5.0 36
Sodium	Naturally occurring	n/a	n/a	mg/L				11.9	6	_No	9.1	26.5	19.8	62	No 12.3	26.1	17.8 70
Specific Conductance	Total of naturally occurring minerals	n/a	n/a	umho/cm	No	167	315	202	6	No	60	122		14	No 57	108	85 25
Strontium-88	Naturally occurring	n/a	n/a	mg/L	No	0.044	0.118	0.058	36	_No	ND	ND		23	No ND	ND	ND 36
Sulfate	Naturally occuring	250	n/a	mg/L				19.4	6	_No	4.1	5.0		14	No 3.6	5.9	4.2 24
Titanium	Naturallý occurring	n/a	n/a	ug/L_		ND	ND	ND	6	No	ND			62	No ND	30.2	12.2 70
Total Organic Carbon (TOC)		n/a	n/a	mg/L		0.6	0.6	0.6	2	_No	0.7	1.1	0.9	2	<u>No 0.7</u>	0.9	0.8 4
Turbidity	Silts and clays in aquifer	5	n/a	NŤU			0.79	ND	_6				1.82		No ND		1.08 25
Uranium	Naturally occurring	30	n/a			ND	ND	ND	6	<u>No</u>	ND			23	No ND	ND	ND 36
Vanadium	Naturally occurring	∣n/a_	n/a	ug/L		ND	2.1	ND	6	<u>No</u>	ND			23	No ND	1.4	ND 36
Zinc	Naturallý occurring, plumbing	5	n/a	mg/L	No	ND	ND	ND	_6	_No	ND	0.14	0.03	23	NoND_	0.02	ND 36
			-														

Synthetic Organic Compounds including Pesticides and Herbicides

Alachlor ESA	Degradation product of Alachlor	50	n/a	ug/L	No	ND	ND	ND 6	No	ND_	ND	ND	_14_	No	ND	ND	ND 24
Alachlor OA	Degradation product of Alachlor	50	n/a	uğ/L	No	ND	ND	ND 6	No	ND_	ND	ND	_14	No	ND	ND	ND 24
Aldicarb Sulfoxide	Pesticide used on row crops	4	1	uğ/L	No	ND	ND	ND 6	No	ND	ND	ND	_14_	No	_ND	ND	ND 24
Chlordane, Total	Residue of banned termiticide	2	n/a	uă/L	No	ND	ND	ND 6	No	ND	ND	ND	_14	No	ND	ND	ND 24
Diethyltoluamide (DEET)	Insect Repellent	50	n/a	uğ/L	No	ND	ND	ND 6	No	ND	ND	ND	13	No	ND	ND	ND 18
1,4-Dioxane	Used in manufacturing processes	1	n/a	ug/L	No	ND	ND	ND 6	No	ND	ND	ND	_14_	No	ND	ND	ND 24
Metalaxyl	Used as a fungicide	50	n/a	uğ/L	No	ND	ND	ND 6	No	ND	ND	ND	13	No	ND	ND	ND 18
Metolachlor ESA	Degradation product of Metolachlor	50	n/a	uğ/L	No	ND (0.59	ND 6	No	ND	ND	ND	_14	No	ND	ND	ND 24
Metolachlor OA	Degradation product of Metolachlor	50	n/a	uğ/L	No	ND	ND	ND 6	No	ND_	ND	ND	_14_	No	ND	ND	ND 24
Tetrachloroterephthalic Acid	Used as a herbicide	50	n/a	uğ/L	No	ND	ND	ND 6	No	ND	ND	ND	_14	_No_	ND	ND	ND 24

						-										
Chlorobenzene	From industrial chemical factories	5	n/a	ug/L	No ND	ND	ND 10	No	ND		ND	24	_No_	ND	ND	ND 28
	Used as a refrigerant	5	n/a	uğ/L	No ND	ND	ND 10	<u>No</u>	ND		ND	24	_No_	ND	ND	ND 28
Cis-1,2-Dichloroethene	From industrial chemical factories	5	n/a	uğ/L	No ND	ND	ND 10	No .	ND	ND	ND	24	No	ND	ND	ND 28
Dichlorodifluoromethane	Refrigerant, aerosol propellant	5	n/a	uğ/L	No ND	ND	ND 10	No	ND		ND	24	No	ND	ND	ND 28
1,1-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uq/L	No ND	ND	ND 10	No	ND	ND	ND	24	No	ND	ND	ND 28
1,2-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uğ/L	No ND	ND	ND 10	No .	ND		ND	24	No	ND	ND	ND 28
1,1-Dichloroethene	From industrial chemical factories	5	n/a	uğ/L	No ND	ND	ND 10	No	ND	ND	ND	24	No	ND	ND	ND 28
1.2-Dichloropropane	From industrial chemical factories	5	0	uq/L	No ND	ND	ND 10	No	ND	ND	ND	24	No	ND	ND	ND 28
Ethyl Benzene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 10	No .	ND		ND	24	No	ND	ND	ND 28
Isopropylbenzene	Used as a solvent	5	n/a	uğ/L	No ND	ND	ND 10	No	ND	ND	ND	24	No	ND	ND	ND 28
Methylethylketone	Used in the coating industry	50	n/a	uğ/L	No ND	ND	ND 10	No	ND	ND	ND	24	No	ND	ND	ND 28
Methyl-Tert-Butyl Ether	Gasoline	10	n/a	uğ/L	No ND	ND	ND 10	No .	ND	ND	ND	24	No	ND	ND	ND 28
o-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 10	No	ND		ND	24	No	ND	ND	ND 28
p,m-Xylene	From paint on inside of water storage tank	5_	n/a	uq/L	No ND	ND	ND 10	No	ND	ND	ND	24	No	ND	ND	ND 28
Tetrachloroethene	Factories, dry cleaners, spills	5	0	ug/L	No ND	ND	ND 10	No	ND	ND	ND	24	No	ND	ND	ND 28
Toluene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 10	No	ND		0.14	24	No	ND	ND	ND 28
1,2,4-Trichlorobenzene	Discharge from textile-finishing factories	5	n/a	uğ/L	No ND	ND	ND 10	No	ND	110	ND	24	No	ND	ND	ND 28
1,1,1-Trichloroethane	Metal degreasing sites, factories	5	n/a	uğ/L	No ND	ND	ND 10	No	ND	ND	ND	24	No	ND	ND	ND 28
Trichloroethene	Metal degreasing sites, factories	5	0	uğ/L	No ND	ND	ND 10	No .	ND		ND	24	No	ND	ND	ND 28
Trichlorofluoromethane	Dry cleaning, propellant, fire extinguishers	5	n/a	uğ/L	No ND	ND	ND 10	No	ND		ND	24	No	ND	ND	ND 28
1,2,3-Trichloropropane	Degreasing agent, manufacturing	5	n/a	uğ/L	No ND	ND	ND 10	No	ND		ND	24	No	ND	ND	ND 28
1,1,2-Trichlorotrifluoroethane	Solvent in paints and varnishes	5	ˈn/aˈ	uğ/L	No ND	ND	ND 10	No .	ND	ND	ND	24	No	ND	ND	ND 28

Naturally Occuring Con	npounds as well as Contaminants					Distrib	ution A	Area 57	,	C	Distrib	ution A	rea 64	ļ.	Distrit	oution A	ea 67
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		<u>e of Rea</u> High Value		No. of Tests	Violation Yes/No		<u>e of Read</u> High Value		No. of Tests			<u>dings</u> Avg. No. Value Tests
Inorganics																	
Alkalinity to pH 4.5 mgCaCO3/L		n/a	n/a	mg/L			67.2	53.5	6				71.2	_7	No 53.8	55.8	54.5 3
Aluminum	Naturally occurring	n/a	n/a	mğ/L	No).03	ND	6		ND		ND	8	No ND	ND	<u>ND 4</u>
Ammonia, free	Some fértilizers, septic systems	n/a	n/a	mg/L			ND	ND	6		ND			10	No ND	ND	ND 3
Arsenic	Erosion of natural deposits	10	0	uğ/L			ND	ND	6		ND		ND	8	No ND	ND	ND 4
Barium	Erosion of natural deposits	2	2	mğ/L			.04	ND	6		ND		ND	8	No ND	ND	ND 4
Boron	Naturally occurring	n/a	n/a	mg/L			ND	ND	6		ND		ND	39	No ND	ND	ND 4
Bromide	Naturally occurring	∣n/a	n/a	uğ/L			9.5	ND	8			264.8 9		12	No ND	ND	ND 3
Calcium	Naturally occurring, pH control	<u> n/a</u>	n/a	mg/L	No 1			18.0	6			17.8 1		39	<u>No 1.4</u>	2.0	1.7 4
Chloride	Naturally occurring, salt water intrusion, road salt	t 250	n/a					31.4	6			86.7 4		8	<u>No 9.3</u>		12.2 3
Chromium, total	Natural deposits	100	100	uğ/L).7	0.5	6		ND		0.6	8	No ND	0.6	ND 4
CO2, calculated	Naturally occurring	n/a	n/a	mğ/L			5.4	5.2	6		3.8 ND		10.1	8 -	No 7.5	8.3	8.0 3
Cobalt-59	Naturally occurring	<u>n/a</u>	n/a	uğ/L			مD	ND	6		ND		ND ND	-0 7	No ND	ND	ND 4
Color, Apparent	Naturally occurring metals or minerals		n/a .3 1.3			ND	5	ND	6		ND		ND	8		ND	ND 3
<u>Copper</u> Fluoride	Household plumbing, leaching of wood preservatives	AL=1 2.2	. <u>3 1.5</u> n/a	mg/L				ND	6		ND		ND ND	8		0.13	0.07 4 ND 3
Hardness, total	Erosion of natural deposits Measure of the calcium and magnesium	100		mg/L			ND 6.5	ND 64.1	<u>6</u> 6				19.4	39	<u>No ND</u> No 5.7	<u>ND</u> 7.8	ND 3 7.2 4
Hardness, total Hexavalent Chromium	Erosion of natural deposits	n/a) n/a n/a	ua/L				0.33	6).33	8	<u>No</u> 0.14	0.26	0.20 3
Iron	Naturally occurring	300	n/a					0.33 ND	6		ND		97	39	<u>No</u> ND	<u> </u>	<u>0.20 3</u> 56 4
Lithium	Naturally occurring	 	n/a	ug/L ug/L			22	14	6		ND		ND	8	<u>No 5.7</u>	8.0	6.4 4
Magnesium	Naturally occurring	n/a	n/a	mg/L				4.63	6		3.73		5.52	39	No 0.57	<u> </u>	0.73 4
Manganese	Naturally occurring	300		ua/L			ND	ND	6		ND		ND	39	No ND	ND	ND 4
Molybdenum	Naturally occurring	n/a						ND	6		ND		ND	8	No ND	ND	ND 4
Nickel	Alloys, coatings manufacturing, batteries	n/a		ug/L			ND ND	ND	6		ND		ND	8	No ND	ND	ND 4
Nitrate	Natural deposits. fertilizer. septic tanks	10		ma/L				1.40	6				1.10	8	No ND	ND	ND 3
Nitrite	Natural deposits, fertilizer, septic tanks	1	1	ma/L			ND	ND	6		ND		ND	8	No ND	ND	ND 3
Perchlorate	Fertilizers, solid fuel propellant, fireworks	18	n/a				ND	ND	6		ND	ND	ND	8	No ND	ND	ND 3
Ha	Measure of water acidity or alkalinity	n/a	n/a	pH Units			3.1	7.5	6	No	6.9	7.6	7.2	10	No 7.1	7.2	7.2 4
pH, field	Measure of water acidity or alkalinity	n/a	n/a	pH Units			3.1	7.6	61		7.0		7.4	34	No 7.0	7.2	7.1 7
Phosphate, total	Added to keep iron in solution	n/a	n/a	mg/L	No	ND I	ND	ND	6			2.28 1	1.44	39	No ND	ND	ND 4
Potassium	Naturally occurring	n/a	n/a	mğ/L	No C).91 1	.60	1.20	6				1.17	39	No 4.84	6.62	5.43 4
Silicon	Naturally occurring	n/a	n/a	mg/L	No	7.0 9	9.8	8.8	6				9.6	8	No 3.6	3.8	3.7 4
Sodium	Naturallý occurring	n/a	n/a	mğ/L				19.4	6				12.1	39	No 28.0	33.0	29.6 4
Specific Conductance	Total of naturally occurring minerals	n/a	n/a	umho/cm			287	240	6				312	_7	No 157	183	169 3
Strontium-88	Naturally occurring	n/a	n/a	mg/L		0.046		0.064				0.082 (8	No ND	ND	ND 4
Sulfate	Naturally occuring	250	n/a	mg/L				10.2	6	No	9.4		10.4	8	No 10.6	10.8	10.7 3
Titanium	Naturallý occurring	∣n/a	n/a	ug/L			ND	ND	6		ND		ND	39	No ND	ND	ND 4
Total Organic Carbon (TOC)		<u> n/a</u>	n/a	<u>mg/L</u>).7	0.7	2		0.6		1.1	2	No ND	ND	ND 1
Turbidity	Silts and clays in aquifer	5	n/a				.46	ND	6		ND		0.59	7_	No ND	ND	ND 3
	Naturally occurring	30	n/a				ND	ND	6		ND		ND	8	No ND	ND	ND 4
Vanadium	Naturally occurring	n/a	n/a	ug/L				ND	6		ND ND			8	No ND	ND	ND 4
Zinc	Naturally occurring, plumbing	5	n/a	mg/L	No	ND I	ND	ND	6	_No	ND	ו שא	ND	<u> </u>	No ND	ND	ND 4

Synthetic Organic Compounds including Pesticides and Herbicides

	Degradation product of Alachlor	50	n/a	ug/L	No ND	ND	ND	6	No	ND	ND ND) 8	No	ND	ND	<u>ND 3</u>
Alachlor OA	Degradation product of Alachlor	50	n/a	uğ/L	No ND	ND	ND	6	No .	ND	ND ND) 8	No	ND	ND	ND 3
Aldicarb Sulfoxide	Pesticide used on row crops	4	1	uɑ/L	No ND	ND	ND	6	No	ND	ND ND) 8	No	ND	ND	ND 3
Chlordane, Total	Residue of banned termiticide	2	n/a	uğ/L	No ND	ND	ND	6	No	ND	ND ND) 8	No	ND	ND	ND 3
Diethyltoluamide (DEET)	Insect Repellent	50	n/a	uğ/L	No ND	ND	ND	6	No .	ND	ND ND) 8	No	ND	ND	ND 3
1.4-Dioxane	Used in manufacturing processes	1	n/a	uɑ/L	No ND	ND	ND	6	No	ND	<u>0.14 ND</u>) 12	No	ND	ND	ND 3
Metalaxyl	Used as a fungicide	50	n/a	uğ/L	No ND	ND	ND	6	No	ND	ND ND) 8	No	ND	ND	ND 3
	Degradation product of Metolachlor	50	n/a	uğ/L	No ND	ND	ND	6	No .	ND	ND ND) 8	No	ND	ND	ND 3
	Degradation product of Metolachlor	50	n/a	uğ/L	No ND	ND	ND	6	No	ND	ND ND) 8	No	ND	ND	ND 3
Tetrachloroterephthalic Acie	Used as a herbicide	50	n/a	uğ/L	No ND	ND	ND	6	No	ND	ND ND	<u>8</u>	No	ND	ND	ND 3

	1										_				
Chlorobenzene	From industrial chemical factories	5	n/a	ug/L	No ND	ND	ND 10	No		D ND	20	No	ND	ND	ND 3
Chlorodifluoromethane	Used as a refrigerant	5_	n/a	uğ/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
	From industrial chemical factories	5	n/a	uğ/L	No ND	ND	ND 10	_No	ND N	D ND	20	No	ND	ND	ND 3
Dichlorodifluoromethane	Refrigerant, aerosol propellant	5	n/a	uğ/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
1,1-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uq/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
1.2-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uă/L	No ND	ND	ND 10	_No	ND N	D ND	20	No	ND	ND	ND 3
1.1-Dichloroethene	From industrial chemical factories	5	n/a	uď/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
1,2-Dichloropropane	From industrial chemical factories	5	0	uq/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
Ethyl Benzene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 10	No		D ND	20	No	ND	ND	ND 3
Isopropylbenzene	Used as a solvent	5	n/a	ua/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
Methylethylketone	Used in the coating industry	50	n/a	ug/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
Methyl-Tert-Butyl Ether	Gasoline	10	n/a	uğ/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
o-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L		ND	ND 10	_No		D ND	20	No	ND	ND	ND 3
p,m-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 10	No		D ND	20	No	ND	ND	ND 3
Tetrachloroethene	Factories, dry cleaners, spills	5	0	uğ/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
Toluene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 10	_No		D ND	20	No	ND	ND	ND 3
	Discharge from textile-finishing factories	5	n/a	uğ/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
1,1,1-Trichloroethane	Metal degreasing sites, factories	5	n/a	uğ/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
Trichloroethene	Metal degreasing sites, factories	5	0	uğ/L	No ND	ND	ND 10	_No	ND N	D ND	20	No	ND	ND	ND 3
	Dry cleaning propellant fire extinguishers	5	n/a	uğ/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
1,2,3-Trichloropropane	Degreasing agent, manufacturing	5	n/a	uğ/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3
1,1,2-Trichlorotrifluoroethane	Solvent in paints and varnishes	5	' n/a '	uğ/L	No ND	ND	ND 10	No	ND N	D ND	20	No	ND	ND	ND 3

Naturally Occuring Con	pounds as well as Contaminants				Dis	stribut	ion Area	a EFW	D	Dis	tributi	on Are	a RSV	/D	Distribut	ion Area	SBWD
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No		<u>je of Read</u> High Value	Avg.	No. of Tests	Violation Yes/No		e of Read High Value	_	No. of Tests			<u>dings</u> Avg. No. Value Tests
Inorganics																	
Alkalinity to pH 4.5 mgCaCO3/L		n/a	n/a	mg/L				5.1	4				33.8	2	No 24.0	51.0	35.4 4
Aluminum	Naturally occurring	n/a	n/a					.03	4	<u>No</u>	ND		ND	2	No ND	0.07	0.03 4
Ammonia, free	Some fértilizers, septic systems	n/a	n/a					ND	_4		ND		ND	2_	No ND	ND	ND 4
Arsenic	Erosion of natural deposits	10		uğ/L				ND	_4	No	ND		ND	2	No ND	ND	ND 4
Barium	Erosion of natural deposits	2	2	mğ/L				ND	_4	No	ND			2	No ND	ND	ND 4
Boron	Naturally occurring	n/a	n/a	mg/L				ND	_4	No	ND		ND	2	No ND	ND	ND 4
Bromide	Naturally occurring	_ n/a	n/a	uğ/L					12	<u>No</u>	ND			10	No ND	52.0	ND 12
Calcium	Naturally occurring, pH control		n/a	mg/L				2.5	4	<u>No</u>			9.9 3.9	2	<u>No 8.1</u>		13.2 4
Chloride	Naturally occurring, salt water intrusion, road sal	t 250						3.4	4		0.5		<u>3.9</u> 0.5		<u>No 6.5</u>		8.2 4
Chromium, total	Natural deposits	100	100	uğ/L				۸D	4	No No	3.8		<u>J.5</u> 4.5	2	No ND	2.0	1.0 4
CO2, calculated	Naturally occurring		n/a	mğ/L				2.5	4		ND		+.5 ND	2 -	<u>No 4.9</u> No ND	9.8	6.6 4 ND 4
Cobalt-59	Naturallý occurring	<u>n/a</u>		uğ/L				۸D	4	No No	5	5	5	2	No ND	ND	ND 4 ND 4
Color, Apparent	Naturallý occurring metals or minerals				No	5 ND		5 ND	4	No	ND		ND	2		ND	
<u>Copper</u> Fluoride	Household plumbing, leaching of wood preservatives Erosion of natural deposits	AL=1 2.2	. <u>3 1.5</u> n/a	mg/L mg/L					4	No	ND			2	<u>No ND</u> No ND	ND ND	ND 4
Hardness, total	Measure of the calcium and magnesium	<u> 2.2</u> n/a						4.2	4				5.4	2	No 25.5		40.5 4
Hexavalent Chromium	Erosion of natural deposits	100						4. <u>2</u>).29	4				0.61	2	<u>No</u> 0.20		40.5 4 0.53 4
Iron	Naturally occurring	300	n/a	ug/L				64	4	No	ND		ND	2	<u>No</u> ND	<u> </u>	<u>0.55 4</u> 59 4
Lithium	Naturally occurring		n/a					ND	4	No	ND		ND	2		ND	ND 4
Magnesium	Naturally occurring	n/a	n/a					.75	4				59	2	<u>No</u> 1.14		1.85 4
Manganese	Naturally occurring	300		ua/L				.75 ND	4	No	ND		ND	2	No ND		ND 4
Molvbdenum	Naturally occurring	n/a							4	No	ND		ND	2	No ND		ND 4
Nickel	Alloys, coatings manufacturing, batteries	n/a						1.3	4		ND		ND	2	No ND	ND	ND 4
Nitrate	Natural deposits, fertilizer, septic tanks	10		mg/L).18	4		0.03	0.07 0	.05	2	No 0.67		1.63 4
Nitrite	Natural deposits, fertilizer, septic tanks	1	1	ma/L				ND	4	No	ND	ND	ND	2	No ND	ND	ND 4
Perchlorate	Fertilizers, solid fuel propellant, fireworks	18	n/a					ND	4	No	ND	ND	ND	2	No ND	0.34	ND 4
На	Measure of water acidity or alkalinity	n/a	n/a					7.7	8	No	7.1		7.2	2	No 6.9	7.2	7.0 4
pH, field	Measure of water acidity or alkalinity	n/a	n/a	pH Units	No	7.0	8.2 7	7.4 1	52	_No	7.0		7.3	50	No 7.0	7.7	7.2 100
Phosphate, total	Added to keep iron in solution	n/a	n/a					ND D	4	_No	ND		ND	2	No ND	ND	ND 4
Potassium	Naturally occurring	n/a	n/a		No 0	.32 (0.52 0	.42	4				.59	2	No 0.44	0.73	0.55 4
Silicon	Naturallý occurring	n/a	n/a					3.4	4	_No	6.3		6.9	2	No 5.4	6.4	5.8 4
Sodium	Naturally occurring	n/a	n/a					1.9	4	No			8.6	2	No 5.2	9.3	6.9 4
Specific Conductance	Total of naturally occurring minerals	n/a		umho/cm				00	4		118		25	2	<u>No 84</u>	186	120 4
Strontium-88	Naturally occurring	n/a	n/a				0.034		4			0.035 (2_	<u>No 0.014</u>		0.023 4
Sulfate	Naturally occuring	250	n/a					3.9	4	No	7.0		7.0	2	No ND	2.7	ND 4
Titanium	Naturallý occurring	∣n/a	n/a					ND.	4	<u>No</u>	ND		ND	2	No ND	ND	ND 4
Total Organic Carbon (TOC)		<u>∣n/a</u>	n/a						4	<u>No</u>	ND			2	<u>No</u> <u>ND</u>	ND	ND 4
Turbidity	Silts and clays in aquifer	5	n/a					ND	4	No	ND			2_	No ND		0.40 4
	Naturally occurring	30	n/a	ug/L				ND	4	<u>No</u>	ND			2	No ND	ND	ND 4
Vanadium	Naturally occurring	<u> n/a</u>	n/a	uğ/L					4	<u>No</u>	ND ND		ND ND	2	No ND	ND	ND 4
Zinc	Naturally occurring, plumbing	5	n/a	mg/L	No I	ND	ND N	ND	_4	_No	ND		שאו		No ND	ND	ND 4
		_	_														

Synthetic Organic Compounds including Pesticides and Herbicides

												•				
	Degradation product of Alachlor	50	n/a	ug/L	No N	<u>D ND</u>	ND	4	No	ND	ND ND	2_	No	ND	ND	ND 4
Alachlor OA	Degradation product of Alachlor	50	n/a	uğ/L	No N	D ND	ND	4	No .	ND	ND ND	2	No	ND	ND	ND 4
Aldicarb Sulfoxide	Pesticide used on row crops	4	1	uğ/L	No N	D ND	ND	4	No	ND	ND ND	2	No	ND	ND	ND 4
Chlordane, Total	Residue of banned termiticide	2	n/a	uğ/L	No NI	D ND	ND	4	No	ND	ND ND	2	No	ND	ND	ND 4
Diethyltoluamide (DEET)	Insect Repellent	50	n/a	uğ/L	No NI	D ND	ND	4	No	ND	ND ND	2	No	ND	ND	ND 4
1,4-Dioxane	Used in manufacturing processes	1	n/a	ug/L	No N	D 0.14	ND	4	No_	ND	ND ND		No	ND	0.21	0.14 4
Metalaxyl	Used as a fungicide	50	n/a	uğ/L	No N	D ND	ND	4	No	ND	ND ND	2	No	ND	ND	ND 4
	Degradation product of Metolachlor	50	n/a	uğ/L	No NI	D ND	ND	4	No	ND	ND ND	2	No	ND	ND	ND 4
	Degradation product of Metolachlor	50	n/a	uğ/L	No N	D ND	ND	4	No .	ND	ND ND	2	No	ND	ND	ND 4
Tetrachloroterephthalic Aci	Used as a herbicide	50	n/a	uğ/L	No N	D ND	ND	4	No	ND	ND ND	2	No	ND	ND	ND 4

Chlorobenzene	From industrial chemical factories	5	n/a	ug/L	No ND	ND	ND 16	No	ND	ND	ND	10	No	ND	ND	ND 12
Chlorodifluoromethane	Used as a refrigerant	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No	ND	ND	ND 12
Cis-1.2-Dichloroethene	From industrial chemical factories	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No	ND	ND	ND 12
Dichlorodifluoromethane	Refrigerant, aerosol propellant	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No	ND	ND	ND 12
1,1-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	ug/L	No ND	ND	ND 16	No	ND	ND	ND	10	No	ND	ND	ND 12
1,2-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No	ND	ND	ND 12
1,1-Dichloroethene	From industrial chemical factories	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No .	ND	ND	ND 12
1,2-Dichloropropane	From industrial chemical factories	5	0	uq/L	No ND	ND	ND 16	No	ND	ND	ND	10	No	ND	ND	ND 12
Ethyl Benzene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No	ND	ND	ND 12
Isopropylbenzene	Used as a solvent	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No .	ND	ND	ND 12
Methylethylketone	Used in the coating industry	50	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No	ND	ND	ND 12
Methyl-Tert-Butyl Ether	Gasoline	10	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No	ND	ND	ND 12
o-Xylene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No .	ND	ND	ND 12
p,m-Xylene	From paint on inside of water storage tank	5	n/a	_uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No .	ND	ND	ND 12
	Factories, dry cleaners, spills	5	0	ug/L	No ND	ND	ND 16	No	ND	ND	ND	10	No .	ND	ND	ND 12
Toluene	From paint on inside of water storage tank	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No .	ND	ND	ND 12
1,2,4-Trichlorobenzene	Discharge from textile-finishing factories	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No .	ND	ND	ND 12
1,1,1-Trichloroethane	Metal degreasing sites, factories	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No	ND	0.26	ND 12
Trichloroethene	Metal degreasing sites, factories	5	0	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No .	ND	ND	ND 12
Trichlorofluoromethane	Dry cleaning, propellant, fire extinguishers	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No .	ND	ND	ND 12
	Degreasing agent, manufacturing	5	n/a	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No .	ND	ND	ND 12
1,1,2-Trichlorotrifluoroethane	Solvent in paints and varnishes	5	ˈn/aˈ	uğ/L	No ND	ND	ND 16	No	ND	ND	ND	10	No .	ND	ND	ND 12

Naturally Occuring Con	npounds as well as Contaminants						Distribution Are	ea WNWD	
Detected Compound	Likely Source	MCL	MCLG	Unit of Measure	Violation Yes/No	Low Value	<u>Range of Readir</u> High Value	ngs Avg. Value	No. of Tests
Inorganics									
Alkalinity to pH 4.5 mgCaCO3/L		n/a	n/a	mg/L	No	70.2	152.0	119.1	10
Aluminum	Naturally occurring	n/a	n/a	mg/L	No	ND	0.04	ND	12
Ammonia, free	Some fértilizers, septic systems	n/a	n/a	mğ/L	No	ND	0.09	ND	12
Arsenic	Erosion of natural deposits	10		uġ/L	No	ND	ND	ND	12
Barium	Erosion of natural deposits	2		mğ/L	No	ND	0.06	0.03	12
Boron	Naturally occurring	n/a	n/a	mğ/L	No	ND	ND	ND	38
Bromide	Naturally occurring	∣n/a	n/a	uğ/L	No	ND	ND	ND	14
Calcium	Naturallý occurring, pH control	<u>n/a</u>	n/a	mg/L	No	5.9	16.7	10.3	38
Chloride	Naturally occurring, salt water intrusion, road salt				No	11.9	62.6	23.1	23
Chromium, total	Natural deposits	100		uğ/L	No	ND	2.1	0.9	12
CO2, calculated	Naturally occurring	n/a	n/a	mğ/L	No	0.7	61.9	16.1	10
Cobalt-59	Naturally occurring	n/a	n/a	uğ/L	No	ND	ND	ND	12
Color, Apparent	Naturallý occurring metals or minerals	15			No	ND	12	ND	10
Copper	Household plumbing, leaching of wood preservatives	AL=1		mg/L	No	ND	0.04	ND	12
luoride	Erosion of natural deposits	2.2	n/a	mg/L	No	ND	ND	ND	23
lardness, total	Measure of the calcium and magnesium	n/a			No	25.7	54.0	38.6	38
lexavalent Chromium	Erosion of natural deposits	100			No	ND	1.94	0.78	10
ron	Naturally occurring	300		ug/L	No	ND	220	ND	38
ithium	Naturally occurring	∣ n/a	n/a	uğ/L	No	ND	ND	ND	12
lagnesium	Naturallý occurring	n/a	n/a	mğ/L	No	1.96	4.79	3.14	38
Aanganese	Naturally occurring	300		uğ/L	No	ND	128	30	38
/lolybdenum	Naturally occurring	n/a			No	ND	ND	ND	12
Nickel	Alloys, coatings manufacturing, batteries	n/a		uğ/L	No	ND	ND	ND	12
litrate	Natural deposits, fertilizer, septic tanks	10		mğ/L	No	2.87	5.99	4.62	23
litrite	Natural deposits, fertilizer, septic tanks	1	1	mg/L	No .	ND	ND	ND	23
Perchlorate	Fertilizers, solid fuel propellant, fireworks	18			No	ND	0.40	ND	10
H	Measure of water acidity or alkalinity	n/a	n/a		No	6.6	8.6	7.4	13
H, field	Measure of water acidity or alkalinity	n/a	n/a	pH Units	No	7.0	8.0	7.4	39
hosphate, total	Added to keep iron in solution	n/a	n/a		No	ND	1.16	0.62	38
Potassium	Naturally occurring	n/a	n/a	mğ/L	No	0.83	4.03	2.31	38
Silicon	Naturally occurring	∣n/a	n/a	mğ/L	No	5.7	8.9	6.7	12
Sodium	Naturally occurring	n/a	n/a	mğ/L	No	32.3	83.3	60.7	38
Specific Conductance	Total of naturally occurring minerals	∣ n/a		umho/cm	No	208	514	365	10
Strontium-88	Naturally occurring	n/a	n/a	mg/L	No	0.048	0.133	0.078	12
Sulfate	Naturally occuring	250	n/a	mg/L	No	9.2	17.5	11.8	23
itanium	Naturally occurring	∣n/a	n/a	ug/L	No	ND	ND	ND	38
otal Organic Carbon (TOC)	Naturally occurring	<u> n/a</u>	n/a	mg/L	No	0.9	1.1	1.0	2
[urbidity	Silts and clays in aquifer	5	n/a		No	ND	0.73	ND	10
Jranium	Naturally occurring	30	n/a	ug/L	No	ND	ND	ND	12
/anadium	Naturally occurring	n/a	n/a	uğ/L	No	ND	ND	ND	12
Zinc	Naturally occurring, plumbing	5	n/a	mg/L	No	ND	0.03	ND	12

Synthetic Organic Compounds including Pesticides and Herbicides

Alachlor ESA	Degradation product of Alachlor	50	n/a	ug/L	No	ND	ND	ND	10
Alachlor OA	Degradation product of Alachlor	50	n/a	uğ/L	No	ND	ND	ND	10
	Pesticide used on row crops	4	1	uğ/L	No	ND	ND	ND	10
Chlordane, Total	Residue of banned termiticide	2	n/a	uq/L	No	ND	ND	ND	10
Diethyltoluamide (DEET)	Insect Repellent	50	n/a	uğ/L	No	ND	0.27	ND	10
1,4-Dioxane	Used in manufacturing processes	1	n/a	uğ/L	No	ND	ND	ND	10
Metalaxyl	Used as a fundicide	50	n/a	uğ/L	No	ND	ND	ND	10
	Degradation product of Metolachlor	50	n/a	uğ/L	No	ND	ND	ND	10
	Degradation product of Metolachlor	50	n/a	uğ/L	No	ND	ND	ND	10
Tetrachloroterephthalic Acie	Used as a herbicide	50	n/a	uğ/L	No	ND	ND	ND	10

Chlorobenzene	From industrial chemical factories	5	n/a	ug/l	N	0N	ID	ND	ND	27
Chlorodifluoromethane	Used as a refrigerant	5	n/a	uğ/L	- N	0 N	ID	ND	ND	27
	From industrial chemical factories	5	n/a	uğ/L		oN	ID	ND	ND	27
	Refrigerant, aerosol propellant	5	n/a	uğ/L						27
1,1-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	ug/l	N					27
1,2-Dichloroethane	Degreaser, gasoline, manufacturing	5	n/a	uğ/L	N					27
1,1-Dichloroethene	From industrial chemical factories	5	n/a	ug/L						27
	From industrial chemical factories	5	0	ug/l						27
	From paint on inside of water storage tank	5	n/a	ug/L						27
	Used as a solvent	5	n/a	ug/L						27
Methylethylketone	Used in the coating industry	50	n/a	ug/l						27
	Gasoline	10	n/a	ug/l						27
	From paint on inside of water storage tank		n/a	ug/L						27
	From paint on inside of water storage tank		n/a	ug/L						27
	Factories, dry cleaners, spills		0	uğ/						27
Toluene	From paint on inside of water storage tank	5	n/a	ug/l						27
1,2,4-Trichlorobenzene	Discharge from textile-finishing factories	5_	n/a	ug/l	- <u>N</u>					27
1,1,1-Trichloroethane	Metal degreasing sites, factories		n/a	uğ/l						27
Trichloroethene	Metal degreasing sites, factories		0	ug/l						27
Trichlorofluoromethane	Dry cleaning,propellant,fire extinguishers Degreasing agent, manufacturing		n/a	ug/l						27
1,2,3-Trichloropropane	Degreasing agent, manufacturing		n/a	ug/l						27
1,1,2-Trichlorotrifluoroethane	Solvent in paints and varnishes	5	' n/a '	ug/l	- <u>N</u>	0 N	ID	ND	ND	27

WELL MONITORING FOR TOTAL COLIFORM

All SCWA wells prior to chlorination (source water monitoring) and the chlorinated water leaving the pump stations are tested quarterly for total coliform bacteria as required. Filtered wells are tested monthly. As part of the GWR, EPA also requires reporting E. coli when found in source water (SW) monitoring. In 2024, all source water monitoring samples were E. colinegative (no E. coli was found), except as noted in the chart below. Additional samples from these wells were total coliform-negative (no coliforms, including E. coli were found), and no sanitary deficiencies were found. In 2024, all entry points to distribution (EPTD) samples were total coliforms, including E. coli were found), except as noted in the chart below. Additional samples from these wells were total coliforms, including E. coli were found), except as noted in the chart below. Additional samples from these wells were total coliforms, including E. coli were found), except as noted in the chart below. Additional samples from these wells were total coliforms, including E. coli were found), except as noted in the chart below. Additional samples from these wells were total coliform-negative (no coliforms, including E. coli were found), except as noted in the chart below. Additional samples from these wells were total coliform-negative (no coliforms, including E. coli were found), except as noted in the chart below. Additional samples from these wells were total coliform-negative (no coliforms, including E. coli were found), and no sanitary deficiencies were found.

2024 Microbiological Test Results for Wells and Heterotrophic Plate Count (HPC)

Well Location	Collection Point at Pump Station	Test Results
Distribution Area 09*	SW (prior to chlorination)	Total coliform-positive, E. coli-positive
Distribution Area 11*	SW (prior to chlorination)	Total coliform-positive, E. coli-positive
Distribution Area 12*	SW (prior to chlorination)	Total coliform-positive, E. coli-positive
Distribution Area 15*	SW (prior to chlorination)	Total coliform-positive, E. coli-positive
Distribution Area 30*	SW (prior to chlorination)	Total coliform-positive, E. coli-positive
Distribution Area 35*	SW (prior to chlorination)	Total coliform-positive, E. coli-positive
Distribution Area 01*	EPTD (after chlorination)	Total coliform-positive, E. coli-negative
Distribution Area WNWD*	EPTD (after chlorination)	Total coliform-positive, E. coli-negative
Distribution Area 12*	EPTD (prior to chlorination)	Total coliform-positive, E. coli-negative
Distribution Area 15*	EPTD (prior to chlorination)	Total coliform-positive, E. coli-negative
Distribution Area WNWD*	EPTD (prior to chlorination)	Total coliform-positive, E. coli-negative

*Please see map on pages 2 and 3 for the distribution area location.

SCWA's lab also tests every filtration system and water storage tank for total coliform and performs Heterotrophic Plate Count (HPC) measurements. Since most bacteria, including many of the

bacteria associated with drinking water systems are heterotrophs, this test can provide useful information about water quality. In 2024, the HPC results for our storage tanks were negative (no heterotrophs were found). The HPC results for our filter systems can be found in the 2024 Drinking Water Quality Report Supplement. Please see page 41 for more information on this report.

MICROBIOLOGICAL TESTING AND MONITORING REQUIREMENTS

To reduce the risk of illness caused by microbial contamination the SCWA tests for total coliform bacteria, including E. coli. Total coliform bacteria are a conservative indicator of the potential for contamination from waste and provides a basis for investigation to determine and correct sanitary deficiencies. E. coli is a coliform bacteria that indicates fecal contamination and an immediate concern requiring prompt investigation. The Total Coliform Rule (TCR) and Ground Water Rule

(GWR) are EPA regulations that require us to test our distribution system for total coliform bacteria. When there is a total coliform-positive result found in a distribution system sample, we are then required to test our wells in the surrounding area. This is called Triggered Source Water Monitoring. In 2024, all Triggered Source Water monitoring samples were total coliform-negative (no coliforms, including E. coli were found).

Revised Total Coliform Rule (RTCR) and Groundwater Rule (GWR) Monitoring

On April 1, 2016, the EPA revised its existing Total Coliform Rule. The revised rule (RTCR) establishes a maximum contaminant level (MCL) for E. coli and uses E. coli and total coliforms to initiate a "find and fix" approach to address fecal contamination that could enter the distribution system. It requires public water systems (PWSs) to perform assessments to identify sanitary defects and subsequently take action to correct them. In 2024, we collected an average of 905 total coliform samples each month, including samples from Brentwood, Dering Harbor,

East Farmingdale, Fair Harbor, Riverside, Stony Brook, Oak Beach and West Neck Water Districts. The number of samples required is based on the population in each distribution area.

Large distribution areas (greater than 40 total coliform samples collected monthly), shown in Table I below, must report the highest percentage of positive samples collected in any one month. Small distribution areas (40 or less total coliform samples collected monthly), shown in Table II below, must report the highest number of positive samples.

Revised Total Coliform Rule Level 1 & Level 2 Assessment Definitions

In 2024 we found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct an assessment (s) to identify problems and to correct any problems that were found during these assessments.

• Level 1 Assessment: A Level 1 assessment is an evaluation of the water system to identify potential problems and determine, if possible, why total coliform bacteria have been found in our water system.

• Level 2 Assessment: A Level 2 assessment is an evaluation of the water system to identify potential problems and determine, if possible, why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

		2	024 Mi	crobiolo	<mark>gical Te</mark> s	st Results for Distribution							
TABI		Microbiol r Large Water Di			sults	TABLE II – Microbiological Test Results for Small Water Distribution Areas							
Compound	Violation	MCL	MCLG	Unit Measure	Likely Source	Compound	Violation	MCL	MCLG	Unit Measure	Likely Source		
Total Coliform Bacteria	Yes/No	Presence of Coliform in 5% of Monthly Samples	0	n/a	Naturally Present in the Environment	Total Coliform Bacteria	Yes/No	Two or More Positive Samples	0	n/a	Naturally Present in the Environment		
Distribution Area		Highest Monthly Percentage Positive	Lowest Monthly Percentage Positive	Average Monthly Percentage Positive	No. of Tests for the Year	Distribution Area		Highest Monthly Amount Positive	Lowest Monthly Amount Positive	Average Monthly Amount Positive	No. of Tests for the Year		
10	No	2.1%	0%	0.2%	535	11	N/A	1	0	0.1	339		
		Distribution Areas had no detections of to					ook, Riversid	is 4, 5, 6, 7, 8, 9, 14, 2 e, East Farmingdale, (had no detections of to	Dak Beach ar	nd West Neck W			

DISINFECTION BYPRODUCTS RULE MONITORING

The SCWA is required to use a disinfectant to reduce the potential of microbial contamination. Chlorine is used to prevent bacterial growth in our distribution system. Disinfectants, such as chlorine, can react with the naturally occurring components in water to form byproducts referred to as disinfection byproducts (DBPs). DBPs. if consumed in excess of the MCL over many years, may lead to increased health risks. То increase public health protection by reducing the potential risk of adverse health effects associated with DBPs from the required chlorination of our drinking water, the SCWA tests for two types of DBPs - Trihalomethanes (THMs) and Haloacetic Acids (HAAs). The MCL is 80 ppb for the sum of the four THMs, and for the sum of five HAAs the MCL is 60 ppb.

The Stage 2 Disinfectant and Disinfection Byproducts Rule (DBPR) is an EPA regulation that requires us to monitor our distribution system quarterly for four THMs (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) and five HAAs (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid). The chart below includes the range of guarterly results for the sum of the two groups of DBPs and the highest Locational Running Annual Average as required. The SCWA also monitors the wells and storage tanks for various other DBPs, including chlorate and four additional HAAs. The 2024 disinfectant and disinfection byproducts results for each distribution area are noted on pages 16-19.

Detected Compound		1	Fotal Trih	alomethane	s		Fotal Hal	oacetic Acid	S
Likely Source		Ву	product	of chlorinati	Byproduct of chlorination				
MCL				80				60	
MCLG			I	N/A]	N/A	
Unit of Measure			u	ıg/L			ι	ıg/L	
				f Readings			Range o	of Readings	
Location	Sample Site	Low Value	High Value	Annual Average	No. of Tests	Low Value	High Value	Annual Average	No. of Tests
SCWA - Zone 1	1	3.19	11.26	6.11	4	0.43	3.81	1.33	4
SCWA - Zone 6	2	3.26	15.99	9.35	4	ND	2.47	1.36	4
SCWA - Zone 10	3	ND	1.10	0.74	4	ND	ND	ND	4
SCWA - Zone 12	4	11.51	23.72	18.36	4	0.56	4.16	2.82	4
SCWA - Zone 1	5	8.79	29.65	17.09	4	1.12	2.91	2.13	4
SCWA - Zone 26	6	4.08	16.00	9.53	4	0.59	1.20	0.79	4
SCWA - Zone 30	7	1.44	7.23	3.53	4	0.55	0.62	0.58	4
SCWA - Zone 54	8	1.16	6.88	3.03	4	0.55	2.59	1.21	4
SCWA - Zone 64	9	4.85	8.17	6.55	4	0.48	0.73	0.60	4
FHWD	1	1.99	8.50	4.46	4	1.16	9.95	4.51	4
FHWD	2	1.16	9.05	4.41	4	0.98	9.77	4.63	4
EFWD	1	1.97	2.37	2.08	4	ND	ND	ND	4
EFWD	2	2.71	4.09	3.43	4	ND	0.50	ND	4
SBWD	1	ND	0.43	0.31	4	ND	ND	ND	4
SBWD	2	0.31	0.76	0.46	4	ND	ND	ND	4
RSWD	1	0.53	1.96	1.28	4	ND	ND	ND	4
RSWD	2	0.92	3.28	2.48	4	ND	ND	ND	4
WNWD	1	1.31	4.99	3.11	1	ND	1.16	0.68	4

2024 Stage 2 DBPR Test Results

Iron and Manganese

Iron is a common metal and a dietary mineral that is essential for maintaining human health. It is used in construction materials, in drinking water pipes, in paint pigments and plastics, and as a treatment for iron deficiency in humans. Iron can be elevated in drinking water in areas where there are high concentrations of iron in soil and rocks, and where iron salts are used in the water treatment process. Iron can also get into drinking water from corrosion of cast iron, steel, and galvanized iron pipes used for water distribution. Elevated levels of iron in water can result in a rusty color and sediment, a metallic taste, and reddish or orange staining.

Although iron is essential for good health, too much iron can cause adverse health effects. For example, oral exposure to very large amounts of iron can cause effects on the stomach and intestines (nausea, vomiting, diarrhea, constipation and stomach pain). These effects occur at iron exposure levels higher than those typically found in drinking water, and usually diminish once the elevated iron exposure is stopped. A small percentage of people have a condition called hemochromatosis, in which the body absorbs and stores too much iron. People with hemochromatosis may be at greater risk for health effects resulting from too much iron in the body (sometimes called "iron overload") and should be aware of their overall iron intake. The New York State standard for iron in drinking water is 0.3 milligrams per liter, and

is based on the effects of iron on the taste, odor and appearance of the water.

Manganese is a common element in rocks, soil, water, plants, and animals. Manganese occurs naturally in water after dissolving from rocks and soil. It may also occur if manganese gets into surface or groundwater after improper waste disposal in landfills or by facilities using manganese in the production of steel or other products. Manganese is an essential nutrient that is necessary to maintain good health. However, exposure to too much manganese can cause adverse health effects. There is some evidence from human studies that long-term exposure to manganese in drinking water is associated with nervous system effects in adults (e.g., weakness, stiff muscles and trembling of the hands) and children (learning and behavior). The results of these studies only suggest an effect because the possible influences of other factors were not adequately assessed. There is supporting evidence that manganese causes nervous system effects in humans from occupational studies of workers exposed to high levels of manganese in air, but the relevance of these studies to long term drinking water exposure is less clear because the exposures were quite elevated and by inhalation, not by ingestion.

Radionuclides and Radiological Monitoring

Gross Alpha and Gross Beta

Most drinking water sources have very low levels of naturally occurring radioactive elements called radionuclides. These levels are low enough not to be considered a public health concern. Radionuclides can be present in several forms called isotopes which emit different types of radioactive particles called alpha or beta. Radioactivity in water is measured in picoCuries per liter (pCi/L). The EPA has set the maximum contaminant level (MCL), the highest level allowed in drinking water, for gross alpha (all alpha emitters except uranium and radon) at 15 pCi/L. NYS considers 50 pCi/L of gross beta activity to be the level of concern for gross beta. The gross alpha and gross beta results for each distribution area are noted on page 34.

Tritium

Some radionuclides emit gamma (also called photon) radiation. Common byproducts from nuclear reactors and waste, such as cesium-137, emit gamma radiation (also called photon emitters). Due to differences in energy levels, the MCL in pCi/L for a particular photon emitter will depend on the type of radionuclide present. Tritium, a radioactive isotope of the element hydrogen, is a weak beta emitter. It occurs naturally in the environment in very low concentrations, and may also be produced during nuclear weapon explosions and as a byproduct from nuclear reactors. The EPA has set a 20,000 pCi/L MCL for tritium. In 2024 we monitored 30 wells near Brookhaven National Laboratory for gross

alpha and beta particles, tritium, and gamma radiation. These wells are located in distribution areas 1 and 12. The gross alpha and gross beta results for these areas are listed in the chart on page 34. There were no detections of tritium or gamma radiation in the 54 samples tested.

Radium-226 and Radium-228

Radium, a naturally radioactive metal, occurs at very low levels in virtually all rock, soil, water, plants, and animals. Radium-226 and radium-228 are isotopes of radium. The EPA has set a combined MCL of 5 pCi/L for radium-226 and radium-228. If radium-226 is not tested, the gross alpha measurement is substituted for radium-226 to determine compliance with the MCL. Some people who drink water containing radium-226 or radium-228 in excess of the MCL over many years may have an increased risk of cancer.

From October 2007 through 2009, we monitored a well in each aquifer at all our well fields for gross alpha, gross beta and radium-228 as required, and presented the results for each year in our Drinking Water Quality Reports. Since that time, quarterly monitoring at new well fields or at new wells placed at a well field where the aquifer had not been monitored previously and continuing monitoring on existing wells as required has been performed. The results for each distribution area are noted in the chart on page 34.

RADIOLOGICAL TEST RESULTS (ALL DISTRIBUTION AREAS)

Radon, a naturally occurring radioactive gas found in soil and outdoor air, may also be found in drinking water and indoor air. Some people exposed to elevated radon levels from sources including drinking water may, over many years, have an increased risk of developing cancer. The main risk from radon is lung cancer entering indoor air from soil under homes. For further information, call the state radon program at (800) 458-1158 or call the EPA's Radon Hotline at (800) SOS-Radon.

In 2024 we monitored for radon at 120 locations throughout our distribution system. The results for each distribution area are noted in the chart below. The test results ranged from ND to 266 pCi/L of radon. Currently there is no MCL for radon. The EPA is proposing to require water suppliers to provide water with levels no higher than 4,000 pCi/L of radon.

Detected Compound	GROS	S ALPH	IA		GROS	S BETA	۹.		RAD	ON-222			RADI	UM-226	;		RADI	UM-228	
Likely Source	Erosion De	of Nati posits	ural			posits, missio				/ occuri ctive ga		Ere		of Natu osits	ıral	Ere		of Natu osits	iral
MCL		15		50					N/A			5			5				
MCLG		0		0					0		0				0				
Unit of Measure	р	Ci/L			р	Ci/L			р	Ci/L		pCi/L				p	Ci/L		
measure	Range o	inas	Range of Readings			Rar	nde o	f Readi	inas	Range of Readings				Ran	de of	Read	inas		
Distribution			<u> </u>		-	Average			-	Average			-	Average		Low	<u> </u>	Average	
Area	Value Value	Value	Tests		Value	Value	Tests		Value	Value	Tests	Value	Value	Value	Tests	Value	Value	Value	Tests
1	ND ND	ND	79	ND	5.95	ND	79	ND	165	ND	29	ND	ND	ND	22	ND	2.01	ND	22
4	ND ND	ND	1	2.64	2.64	2.64	1	ND	ND	ND	1	NA	NA	NA	0	NA	NA	NA	0
5	ND ND	ND	2	2.39	2.69	2.33	2	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	1
6	ND ND	ND	7	ND	3.34	2.12	7	ND	166	ND	3	ND	ND	ND	4	ND	1.73	1.05	4
7	ND ND	ND ND	2	ND ND	3.67 ND	2.34 ND	2	ND ND	ND ND	ND ND	1	ND NA	ND NA	ND NA	1	ND NA	ND NA	ND NA	1
0 9	ND ND	ND	3	ND	ND	ND	3	ND	ND	ND	3	NA	NA	NA	0	NA	NA	NA	0
9 10	ND ND		4	ND	3.68	2.42	4	ND	ND	ND	3	ND	ND	ND	1	1.09	1.09	1.09	1
10	ND 1.81	ND	11	ND	4.14	2.42	11	ND	ND	ND	2	ND	1.29	ND	9	ND	2.30	1.09	9
12	ND 2.12	ND	61	ND	3.78	2.03 ND	61	ND	165	ND	24	ND	1.29 ND	ND	15	ND	1.07	ND	15
12	ND 2.12	ND	3	ND	2.45	ND	3	ND	ND	ND	3	NA	NA	NA	0	NA	NA	NA	0
14	ND ND	ND	22	ND	3.49	ND	22	ND	197	107	12	ND	ND	ND	10	ND	ND	ND	10
23	ND ND	ND	20	ND	3.93	ND	20	ND	163	ND	11	ND	ND	ND	9	ND	ND	ND	9
26	ND 2.37	ND	8	ND	3.38	ND	8	ND	266	122	3	ND	ND	ND	5	ND	ND	ND	5
30	ND ND	ND	14	ND	4.53	2.31	14	ND	ND	ND	7	ND	ND	ND	7	ND	ND	ND	7
30	ND ND	ND	1	ND	4.33 ND	ND	14	ND	ND	ND	1	NA	NA	NA	0	NA	NA	NA	0
32 34	ND ND	ND	2	ND	ND	ND	2	ND	172	111	2	NA	NA	NA	0	NA	NA	NA	0
34	ND ND	ND	1	ND	ND	ND	2	ND	ND	ND	1	NA	NA	NA	0	NA	NA	NA	0
44	ND ND	ND	1	ND	ND	ND	1	ND	ND	ND	1	NA	NA	NA	0	NA	NA	NA	0
53	ND ND	ND	1	2.44	2.44	2.44	1	ND	ND	ND	1	NA	NA	NA	0	NA	NA	NA	0
54	ND ND	ND	5	ND	2.59	ND	5	ND	ND	ND	2	ND	ND	ND	3	ND	ND	ND	3
57	ND ND	ND	1	2.40	2.33	2.40	1	ND	ND	ND	1	NA	NA	NA	0	NA	NA	NA	0
64	ND ND	ND	1	ND	ND	 ND	1	ND	ND	ND	1	NA	NA	NA	0	NA	NA	NA	0
67	ND ND	ND	1	4.00	4.00	4.00	1	NA	NA	NA	0	ND	ND	ND	1	ND	ND	ND	1
EFWD	ND ND	ND	2	ND	3.36	2.18	2	ND	ND	ND	2	NA	NA	NA	0	NA	NA	NA	0
RSWD	ND ND	ND	1	ND	ND	ND	1	ND	ND	ND	1	NA	NA	NA	0	NA	NA	NA	0
SBWD	ND 2.18	ND	2	ND	2.26	ND	2	ND	ND	ND	2	NA	NA	NA	0	NA	NA	NA	0
WNWD	ND ND	ND	1	ND	ND	ND	1	ND	ND	ND	1	NA	NA	NA	0	NA	NA	NA	0

Asbestos Monitoring

Asbestos-cement water mains are made from cement with asbestos fibers added to make the pipes strong. Although drinking water can pass through these pipes without becoming contaminated with asbestos fibers, asbestos fibers may be released through the wear or breakdown of these mains; erosion of natural deposits. The EPA has set the maximum contaminant level (MCL) for asbestos at 7.0 million fibers per liter (MFL). Some people who drink water containing asbestos in excess of the MCL over many years may have an increased risk of developing benign intestinal polyps. Although testing is required every nine years, the SCWA tests every year.

In 2024 we monitored 18 sampling station locations where asbestos-cement pipes exist and 5 production wells. All locations were non-detect (no asbestos fibers were present).

2024 Methane Test Results for Distribution Area 23*

One well in Distribution Area 23 had concentrations of methane. The methane results ranged from nondetect (ND) or no methane found, to 6.1 ppb. Currently granular activated carbon (GAC) treatment is being used at this well for methane removal. Methane is primarily produced through the decomposition of organic matter in natural sources like wetlands, with landfills being a significant contributor. Methane is the primary component of natural gas and is commonly used as a fuel source. At these levels, methane poses a minimal risk for health effects. The state defines methane as an unregulated organic contaminant and assigns an MCL of 50 ppb. A summary of the 2024 test results for Distribution Area 23 is shown in the chart below.

Detected Compounds	Unit of Measure	Low Value	High Value	Average Value	No. of Tests
Methane	ppb	ND	6.1	ND	10

2024 Nitrosamine Test Results for Distribution Area 12*

One well in Distribution Area 12 had nitrosamines. Currently granular activated carbon (GAC) treatment is being used at these wells for nitrosamine removal. Nitrosamines can be formed by a byproduct of the disinfection of drinking water or found as a contaminant in drinking water from manufacturing processes such as for rubber and latex products. Additionally, nitrosamines are found in tobacco smoke, cosmetics and food products such as cured meats and fish, beer and smoked products, and they also form in the body from the nitrosation of dietary amines. The EPA has classified several nitrosamines as probable carcinogens, but has not set an MCL. The nitrosamines were measured at extremely low levels, in parts per trillion or ppt. A summary of the 2024 test results for Distribution Area 12 is shown in the chart below.

Detected Compounds	Unit of Measure	Low Value	High Value	Average Value	No. of Tests
N-Nitrosomorpholine	ppt	ND	2.5	ND	16

2024 Anionic Surfactants Test Results for Distribution Area 12*

One well in Distribution Area 12 had surfactants. Surfactants are commonly used in detergents and cleaning products. Their presence in drinking water can result from wastewater discharge or stormwater runoff. While there is no MCL set for surfactants, the NYS Department of Health has established a guidance level of 0.5 ppm based on aesthetic concerns, such as foaming. A summary of the 2024 test results for Distribution Area 12 is shown in the chart below.

Detected Compounds	Unit of Measure	Low Value	High Value	Average Value	No. of Tests
Surfactants, anionic	ppm	ND	0.09	ND	123

2024 AOP Byproduct Test Results for Distribution Areas 5, 6, 7, 9 and 12

At wells located in Distribution Areas 5, 6, 7, 9 and 12 the Suffolk County Water Authority utilizes an AOP (Advanced Oxidation Process) to treat for an emerging contaminant, 1,4-Dioxane. The New York State Department of Health required the SCWA to perform additional testing for specific Aldehydes and Carboxylic Acids. These compounds are potential by-products of the treatment process and are indicators of the effectiveness of the AOP system. There were no positives detected in 2024.